Showing 2 of 2 results
Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of $\pi^\pm$-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of positively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z1$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z2$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z3$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z4$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z5$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 0 to 20 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 20 to 40 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 40 to 60 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 60 to 80 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 80 to 100 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 100 to 140 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 140 to 180 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 180 to 220 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 220 to 260 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 260 to 300 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Spectra of negatively charged pions at the surface of the T2K replica target, in the polar angle range from 300 to 340 mrad and for longitudinal bin $z6$, as a function of momentum. The normalization is per proton on target.
Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated {luminosity} of 82.2 pb$^{-1}$ collected with the ZEUS detector at HERA. The kinematic range was $80 < Q^2 < 20 480\gev^2$ and $0.0024 < x < 0.6$, where $Q^2$ is the virtuality of the exchanged boson and $x$ is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of $\alpha_s$ and of the non-perturbative parameter of the model, $\albar$, suggests the importance of higher-order processes that are not yet included in the model.
Mean value of the event shape variable 1-THRUST(C=T).
Mean value of the event shape variable B(C=T).
Mean value of the event shape variable RHO**2.
Mean value of the event shape variable C-PARAM.
Mean value of the event shape variable 1-THRUST(C=G).
Mean value of the event shape variable B(C=G).
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape RHO**2 corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape C-PARAM corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape THRUST(C=T) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape B(C=T) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape THRUST(C=G) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape B(C=G) corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
Differential distribution for event shape Y2 corrected to the hadron level for the Q**2 range 10240 TO 20480 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 80 TO 160 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 160 TO 320 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 320 TO 640 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 640 TO 1280 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 1280 TO 2560 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 2560 TO 5120 GeV**2.
Differential distribution for event shape (KOUT/Q) corrected to the hadron level for the Q**2 range 5120 TO 10240 GeV**2.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.