Modern physics experiments are frequently very complex, relying on multiple simultaneous events to happen in order to obtain the desired result. The experiment control system plays a central role in orchestrating the measurement setup: However, its development is often treated as secondary with respect to the hardware, its importance becoming evident only during the operational phase. Therefore, the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) collaboration has created a framework for easily coding control systems, specifically targeting atomic, quantum, and antimatter experiments. This framework, called Total Automation of LabVIEW Operations for Science (TALOS), unifies all the machines of the experiment in a single entity, thus enabling complex high-level decisions to be taken, and it is constituted by separate modules, called MicroServices, that run concurrently and asynchronously. This enhances the stability and reproducibility of the system while allowing for continuous integration and testing while the control system is running. The system demonstrated high stability and reproducibility, running completely unsupervised during the night and weekends of the data-taking campaigns. The results demonstrate the suitability of TALOS to manage an entire physics experiment in full autonomy: being open-source, experiments other than the AEgIS experiment can benefit from it.
Graph showing the number of antiprotons captured vs the closure timing of the trap. It clearly shows the presence of a best working point. Closing too fast lets some antiprotons out, and, conversely, closing too slow lets some antiprotons escape after the bounce on the second electrode.
Graph showing the number of antiprotons captured varying the potential of the catching electrodes. This scan characterizes the energy profile of the p's passing through the degrader, and their ratio is in good accordance with our GEANT4 simulations.
Two graphs show the results of the scan over the horizontal and vertical displacements of the antiproton beam (on the left) and the horizontal and vertical angles (see Table 4, after). The color represents the intensity of the signal obtained on the MCP from the annihilations of the trapped antiprotons. The parameter space has been organized in this way, assuming that displacements and angles have independent effects, not for physics reasons, but because scanning over the full parameter space would have been impossible time-wise (10 steps per dimension 4 dimensions x 5 min of duration of the script ~35 days!).
We report the differential yields at mid-rapidity of the Breit-Wheeler process ($\gamma\gamma\rightarrow e^{+}e^{-}$) in peripheral Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}} = $ 54.4 GeV and 200 GeV with the STAR experiment at RHIC, as a function of energy $\sqrt{s_{_{\rm{NN}}}}$, $e^{+}e^{-}$ transverse momentum $p_{\rm T}$, $p_{\rm T}^{2}$, invariant mass $M_{ee}$ and azimuthal angle. In the invariant mass range of 0.4 $<$$M_{ee}$$<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_{\rm T}$$ < $0.15 GeV/$c$), the yields increase while the pair $\sqrt{\langle p_{\rm T}^{2} \rangle}$ decreases with increasing $\sqrt{s_{_{\rm{NN}}}}$, a feature is correctly predicted by the QED calculation. The energy dependencies of the measured quantities are sensitive to the nuclear form factor, infrared divergence and photon polarization. The data are compiled and used to extract the charge radius of the Au nucleus.
'54.4 GeV, Centrality: 40-60%'
'54.4 GeV, Centrality: 60-80%'
'54.4 GeV, Centrality: 80-100%'
We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.
dN/dy of lambda for different centrality bins.
dN/dy of Ks0 for different centrality bins.
Rapidity dependence of Lambda/p for different centrality bins.
In heavy-ion collision experiments, the global collectivity of final-state particles can be quantified by anisotropic flow coefficients ($v_n$). The first-order flow coefficient, also referred to as the directed flow ($v_{1}$), describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. It carries information on the very early stage of the collision, especially at large pseudorapidity ($\eta$), where it is believed to be generated during the nuclear passage time. Directed flow therefore probes the onset of bulk collective dynamics during thermalization, providing valuable experimental guidance to models of the pre-equilibrium stage. In 2018, the Event Plane Detector (EPD) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD ($2.1 <|\eta|< 5.1$) and high-statistics BES-II data enables us to extend the $v_{1}$ measurement to the forward and backward $\eta$ regions. In this paper, we present the measurement of $v_{1}$ over a wide $\eta$ range in Au+Au collisions at $\sqrt{s_{NN}}=$ 19.6 and 27 GeV using the STAR EPD. The results of the analysis at $\sqrt{s_{NN}}=$19.6 GeV exhibit excellent consistency with the previous PHOBOS measurement, while elevating the precision of the overall measurement. The increased precision of the measurement also revealed finer structures in heavy-ion collisions, including a potential observation of the first-order event-plane decorrelation. Multiple physics models were compared to the experimental results. Only a transport model and a three-fluid hybrid model can reproduce a sizable $v_{1}$ at large $\eta$ as was observed experimentally. The model comparison also indicates $v_{1}$ at large $\eta$ might be sensitive to the QGP phase transition.
Directed flow vs pseudorapidity.
Directed flow vs pseudorapidity.
Directed flow vs pseudorapidity.
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the PHENIX experiment in 2014 for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$~GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$ collisions, $I_{AA}$ and $\Delta_{AA}$, as a function of the trigger-hadron azimuthal separation, $\Delta\phi$, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects.
Per-trigger jet-pair yield as a function of $\Delta\phi$ for selected $\pi^0$ trigger and charged-hadron-associated $p_T$ combinations (${{p_{T,\pi^0}} \otimes p_{T,h}}$) in Au$+$Au collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Integrated away-side $I_{AA}$ as a function of $p_T^h$. Systematic uncertainties for background subtraction and global scale uncertainties are given.
Differential away-side a function of Deltaphi 0%-20% collisions. Systematic uncertainties for background subtraction and global scale uncertainties are given.
A powerful and robust control system is a crucial, often neglected, pillar of any modern, complex physics experiment that requires the management of a multitude of different devices and their precise time synchronisation. The AEgIS collaboration presents CIRCUS, a novel, autonomous control system optimised for time-critical experiments such as those at CERN's Antiproton Decelerator and, more broadly, in atomic and quantum physics research. Its setup is based on Sinara/ARTIQ and TALOS, integrating the ALPACA analysis pipeline, the last two developed entirely in AEgIS. It is suitable for strict synchronicity requirements and repeatable, automated operation of experiments, culminating in autonomous parameter optimisation via feedback from real-time data analysis. CIRCUS has been successfully deployed and tested in AEgIS; being experiment-agnostic and released open-source, other experiments can leverage its capabilities.
Synchronous voltage ramp-up to 20 V on three high-voltage amplifier channels 10 μs subsequent to the arrival of a common trigger pulse at zero time in the figure. The inset shows a zoom to the shoulder region for a better visualisation of the synchronicity.
A feedback loop uses the uncorrected laser pulse timings (red squares) to calculate the deviation from the user setting (solid black line) over the course of an hour, and corrects the timing of the subsequent desired laser pulse that is used for the actual experiment (blue circles). Independent of short-term to long-term drifts or even sudden jumps, the resulting timing is always close to the desired value.
A feedback loop uses the uncorrected laser pulse timings (red squares) to calculate the deviation from the user setting (solid black line) over the course of an hour, and corrects the timing of the subsequent desired laser pulse that is used for the actual experiment (blue circles). Independent of short-term to long-term drifts or even sudden jumps, the resulting timing is always close to the desired value.
Atomic nuclei are self-organized, many-body quantum systems bound by strong nuclear forces within femtometer-scale space. These complex systems manifest a variety of shapes, traditionally explored using non-invasive spectroscopic techniques at low energies. However, at these energies, their instantaneous shapes are obscured by long-timescale quantum fluctuations, making direct observation challenging. Here we introduce the ``collective flow assisted nuclear shape imaging'' method, which images the nuclear global shape by colliding them at ultrarelativistic speeds and analyzing the collective response of outgoing debris. This technique captures a collision-specific snapshot of the spatial matter distribution within the nuclei, which, through the hydrodynamic expansion, imprints patterns on the particle momentum distribution observed in detectors. We benchmark this method in collisions of ground state Uranium-238 nuclei, known for their elongated, axial-symmetric shape. Our findings show a large deformation with a slight deviation from axial symmetry in the nuclear ground state, aligning broadly with previous low-energy experiments. This approach offers a new method for imaging nuclear shapes, enhances our understanding of the initial conditions in high-energy collisions and addresses the important issue of nuclear structure evolution across energy scales.
Data from Figure 2, panel a, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel a, U+U, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c, systematics include non-flow difference in the two systems, but correlated non-flow systematics with the value of $\delta \left\langle v_{2}^{2}\right\rangle$ =+-3.2e-5 included
Data from Figure 2, panel b, Au+Au, 0-0.5% Centrality, 0.2<p_{T}<3 GeV/c
For the search of the chiral magnetic effect (CME), STAR previously presented the results from isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) obtained through a blind analysis. The ratio of results in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator ($\Delta\gamma$), normalized by elliptic anisotropy ($v_{2}$), was observed to be close to but systematically larger than the inverse multiplicity ratio. The background baseline for the isobar ratio, $Y = \frac{(\Delta\gamma/v_{2})^{\text{Ru}}}{(\Delta\gamma/v_{2})^{\text{Zr}}}$, is naively expected to be $\frac{(1/N)^{\text{Ru}}}{(1/N)^{\text{Zr}}}$; however, genuine two- and three-particle correlations are expected to alter it. We estimate the contributions to $Y$ from those correlations, utilizing both the isobar data and HIJING simulations. After including those contributions, we arrive at a final background baseline for $Y$, which is consistent with the isobar data. We extract an upper limit for the CME fraction in the $\Delta\gamma$ measurement of approximately $10\%$ at a $95\%$ confidence level on in isobar collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV, with an expected $15\%$ difference in their squared magnetic fields.
Figure 1a, upper panel, full-event
Figure 1a, lower panel, full-event
Figure 1b, upper panel, subevent
We report on laser cooling of a large fraction of positronium (Ps) in free-flight by strongly saturating the $1^3S$-$2^3P$ transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived $3^3P$ states. The second effect is the one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a 58(9) % increase in the coldest fraction of the Ps ensemble.
SSPALS spectra of positronium in vacuum without lasers, with the 205 nm and 1064 nm lasers, with the 243 nm laser only, and with all three lasers 243 nm, 205 nm and 1064 nm. The 243 nm laser is firing during the time window from −20 to 50 ns, while the 205 nm and 1064 nm are injected 75 ns after positron implantation time (t = 0 ns). Each curve is an average of 90 individual spectra. The statistical error is smaller than the linewidths. For analysis, the spectra were integrated between 150 and 400 ns.
Ps velocity distribution measured by SSPALS. Transverse Doppler profile measured by two-photon resonant ionization. A Gaussian fit yields an rms width of 44(1) pm, which translates to a Ps rms velocity of 5.3 $\pm$ 0.2 × 10$^4$ m/s after deconvoluting the laser bandwidth.
Ps velocity distribution measured by SSPALS. Velocity-resolved increase in the number of ground state Ps atoms, induced by the 243 nm transitory excitation to the 2$^3$P level. At resonance, the expected Lamb dip is observed. A 2-Gaussian fit yields an rms width of the enveloping Gaussian of 44(3) pm, which corresponds to a Ps rms velocity of 4.9 $\pm$ 0.4 × 10$^4$ m/s.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.