Charged pions and light nuclei (p, d, t, He3, and He4) have been measured in the interaction of proton beams with C, Nb, and Pb targets at 0.8 and 1.6 GeV incident energies, using a large solid angle detector. From slices on the multiplicity of protonlike particles (free protons and protons bound in light fragments), the events have been sorted out into two classes corresponding to more peripheral and more central collisions. For each class of events, the mean value and the dispersion of the π+ and π− multiplicity distributions have been studied as a function of target mass and incident energy. Comparisons to the Liege intranuclear cascade predictions exhibit some discrepancies which are discussed.
OBSERVATION OF THE PROTONLIKE MULTIPLICITY.
OBSERVATION OF PERCENTAGE OF THE PROTONLIKE MULTIPLICITY REACTIONS.
OBSERVATION OF PERCENTAGE OF THE PROTONLIKE MULTIPLICITY REACTIONS.
Production of Ξ − and Ξ − has been observed for the first time in heavy ion interactions by the WA85 Experiment. Multistrange baryon and antibaryon production is expected to be a useful probe in the search for quark-gluon plasma formation. We describe the procedure used to select these cascade candidates and show that Ξ − and Ξ − decays can be identified. The ratio of Ξ Ξ production, corrected for geometrical acceptances and reconstruction efficiencies, is 0.39 ± 0.07 for sulphur-tungsten interactions in the central rapidity interval 2.3< Y lab <3.0 and p T >1.1 GeV/ c .
No description provided.
The PS185 experiment at the CERN Low Energy Antiproton Ring (LEAR) has studied the reaction p ̄ p → \ ̄ gLΛ at several momenta. In this paper results from two runs with high statistics at 1.546 GeV/ c and 1.695 GeV/ c are described. Based on 4063 and 11362 analysed events, respectively, differential and integrated cross sections, polarizations and spin correlations are presented. The singlet fraction, extracted from the spin correlations, is consistent with zero at both momenta, showing that the \ ̄ gLΛ pairs are produced in a pure triplet state. A comparison of the decay asymmetry parameters of Λ and \ ̄ gL reduces the upper limits for the violation of the CP invariance for this system.
No description provided.
THE BESTFIT WITH LMAX=3, HI2=1.204.
THE BESTFIT WITH LMAX=6, HI2=0.547.
This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is
Charged particle multiplicity distribution for the raw data in full phase space.
Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.
Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.
An analysis of high-transverse-momentum electrons using data from the Collider Detector at Fermilab (CDF) of p¯p collisions at s=1800 GeV yields values of the production cross section times branching ratio for W and Z0 bosons of σ(p¯p→WX→eνX)=2.19±0.04(stat)±0.21(syst) nb and σ(p¯p→Z0X→e+e−X)=0.209±0.013(stat)±0.017(syst) nb. Detailed descriptions of the CDF electron identification, background, efficiency, and acceptance are included. Theoretical predictions of the cross sections that include a mass for the top quark larger than the W mass, current values of the W and Z0 masses, and higher-order QCD corrections are in good agreement with these measured values.
No description provided.
In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .
NC, CF, and TR are the color factors for SU(3) group.
Data are presented on Pomeron-Pomeron interactions which produce a centralπ+π− system in proton-proton collisions at\(\sqrt s= 62 GeV\) at the CERN Intersecting Storage Rings. This process may favor the production of gluonic bound states. A partial-wave analysis of theπ+π− system shows evidence for the production of the statesf0(975),f0(1400), andf2(1270). The fitted mass for thef2(1270) is about 50 MeV below the world average. In addition, the production mechanism for thef2(1270) is uniquely different from that for the other final states in that there is a correlation between the outgoing protons. this is consistent with a picture of two-gluon exchange with thef2(1270) produced by gluon fusion, and could indicate that thef2(1270) has a glueball component.
No description provided.
We have measured the production cross-section times branching ratio for J/ψ→μ + μ − in pp̄ interactions at √ s = 630 GeV in the kinematic range |y|<2.0 and p T >5 GeV /c, BR ( J /ψ→μ + μ − )σ( p p ̄ → J /ψ)=6.18±0.24±0.81 nb . The data sample collected in 1988 and 1989 for an integrated luminosity of 4.7 pb −1 represents a fivefold improvement over the statistics in our earlier study of the J / ψ production process, and the p T distribution which is measured extends to 28 GeV / c . Using event topology we show that the rate for the direct production of J / ψ , via radiative decays of χ states, is larger than that for production via B-hadrons. Production of ψ′ is also studied using the decay modes < ψ ′→ μ + μ − and ψ ′→ J / ψπ + ψ − .
Numerical values supplied by Nick Ellis.
.
.
We have studied the hadronic production of charmed mesons in the NA 32 experiment at CERN. A special trigger together with a high resolution vertex detector consisting of charge coupled devices and silicon microstrip detectors allowed the selection of very clean samples of charmed mesons. We have collected 852 fully reconstructed decays: 60Ds+→K+K−π+, 543D°→K−π+ andK−π+π−π+ as well as 249D+→K−π+π+ (or charge conjugate). 147 mesons out of our\({{D^0 } \mathord{\left/ {\vphantom {{D^0 } {\bar D^0 }}} \right. \kern-\nulldelimiterspace} {\bar D^0 }}\) sample were produced via chargedD* state. For all charmed mesons we determine the total production cross-section and study thexF andpt2 distributions.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
Data fitted with the form d2sig/dxdpt**2 alpha ((1-x)**N)* EXP(-B*PT**2) using combined maximum likelihood fit to the invariant mass spectrum and the x and pt**2 distributions. The values for N and B are given here. Additional systematic errors are 10 pct for N and 3 pct for B.
None
ANTIPROTONS STOPPING IN THE PHOTOEMULSION.