Study of the process $e^+e^-\to\eta\gamma$ in the center-of-mass energy range 1.07--2.00 GeV

Achasov, M.N. ; Aulchenko, V.M. ; Barnyakov, A.Yu. ; et al.
Phys.Rev.D 90 (2014) 032002, 2014.
Inspire Record 1275333 DOI 10.17182/hepdata.62279

The $e^+e^-\to\eta\gamma$ cross section has been measured in the center-of-mass energy range 1.07--2.00 GeV using the decay mode $\eta\to 3\pi^0$, $\pi^0\to \gamma\gamma$. The analysis is based on 36 pb$^{-1}$ of integrated luminosity collected with the SND detector at the VEPP-2000 $e^+e^-$ collider. The measured cross section of about 35 pb at 1.5 GeV is explained by decays of the $\rho(1450)$ and $\phi(1680)$ resonances.

2 data tables

The energy interval and E+ E- --> ETA GAMMA Born cross section(SIG). The first error in the cross section is statistical, the second systematic. For the last two energy intervals, the upper limits at the 90 PCT confidence level are listed for the cross section.

The fitted values of the cross sections at the resonance peaks.


Study of the reaction $e^+e^- \to \pi^0\gamma$ with the SND detector at the VEPP-2M collider

The SND collaboration Achasov, M.N. ; Beloborodov, K.I. ; Berdyugin, A.V. ; et al.
Phys.Rev.D 93 (2016) 092001, 2016.
Inspire Record 1418483 DOI 10.17182/hepdata.77047

The process $e^+e^- \to \pi^0\gamma$ has been studied in the experiment with the SND detector at the VEPP-2M $e^+e^-$ collider. The $e^+e^- \to \pi^0\gamma$ cross section has been measured in the center-of-mass energy range from 0.60 to 1.38 GeV. The cross section is well described by the vector meson dominance model. From the fit to the cross section data we have determined the branching fractions $B(\rho\to\pi^0\gamma)=(4.20\pm0.52)\times10^{-4}$, $B(\omega\to\pi^0\gamma)=(8.88\pm0.18)\%$, $B(\phi\to\pi^0\gamma)=(1.367\pm0.072)\times10^{-3}$, and the relative phase between the $\rho$ and $\omega$ amplitudes $\varphi_{\rho}=(-12.7\pm4.5)^\circ$. Our data on the process $e^+e^- \to \pi^0\gamma$ are the most accurate to date.

1 data table

The c.m.energy ($E$), integrated luminosity ($L$), detection efficiency ($\varepsilon$), number of selected signal events ($N_{\rm sig}$), radiative-correction factor ($1+\delta$), measured Born cross section ($\sigma$). For the cross section the first error is statistical, the second is systematic.


Experiments at VEPP-2M with SND detector

The SND collaboration Achasov, M.N. ; Aulchenko, V.M. ; Baru, S.E. ; et al.
BINP-98-65, 1998.
Inspire Record 476386 DOI 10.17182/hepdata.50374

Short overview of experiments with SND detector at VEPP-2M e^+e^- collider in the energy range 2E = 400 - 1400 MeV and preliminary results of data analysis are presented.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$ from 62.4 GeV to 2.76 TeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024911, 2016.
Inspire Record 1394434 DOI 10.17182/hepdata.142336

Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.

14 data tables

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Cu+Cu collisions at RHIC from PHENIX.

More…

Measurement of the relative yields of $\psi(2S)$ to $\psi(1S)$ mesons produced at forward and backward rapidity in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 95 (2017) 034904, 2017.
Inspire Record 1487575 DOI 10.17182/hepdata.149529

The PHENIX Collaboration has measured the ratio of the yields of $\psi(2S)$ to $\psi(1S)$ mesons produced in $p$$+$$p$, $p$$+$Al, $p$$+$Au, and $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV over the forward and backward rapidity intervals $1.2<|y|<2.2$. We find that the ratio in $p$$+$$p$ collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward ($p$-going or $^{3}$He-going) direction, the relative yield of $\psi(2S)$ mesons to $\psi(1S)$ mesons is consistent with the value measured in \pp collisions. However, in the backward (nucleus-going) direction, the $\psi(2S)$ is preferentially suppressed by a factor of $\sim$2. This suppression is attributed in some models to breakup of the weakly-bound $\psi(2S)$ through final state interactions with comoving particles, which have a higher density in the nucleus-going direction. These breakup effects may compete with color screening in a deconfined quark-gluon plasma to produce sequential suppression of excited quarkonia states.

9 data tables

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

Summary of the measured ratios of $\Psi$(2S)/$\Psi$(1S) mesons.

More…

First measurement of sigma (p anti-p ---> Z) . Br (Z ---> tau tau) at s**(1/2) = 1.96- TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 71 (2005) 072004, 2005.
Inspire Record 666357 DOI 10.17182/hepdata.50921

We present a measurement of the cross section for $Z$ production times the branching fraction to $\tau$ leptons, $\sigma \cdot$Br$(Z\to \tau^+ \tau^-)$, in $p \bar p$ collisions at $\sqrt{s}=$1.96 TeV in the channel in which one $\tau$ decays into $\mu \nu_{\mu} \nu_{\tau}$, and the other into $\rm {hadrons} + \nu_{\tau}$ or $e \nu_e \nu_{\tau}$. The data sample corresponds to an integrated luminosity of 226 pb$^{-1}$ collected with the D{\O}detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain $\sigma \cdot$Br$(Z \to \tau^+ \tau^-)=237 \pm 15$(stat)$\pm 18$(sys)$ \pm 15$(lum) pb, in agreement with the standard model prediction.

1 data table

Measured cross section times branching ratio.


Measurement of inclusive differential cross sections for Upsilon(1S) production in p anti-p collisions at s**(1/2) = 1.96-TeV

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 94 (2005) 232001, 2005.
Inspire Record 676877 DOI 10.17182/hepdata.51525

We present measurements of the inclusive production cross sections of the Upsilon(1S) bottomonium state in ppbar collisions at sqrt(s) = 1.96 TeV. Using the Upsilon(1S) to mu+mu- decay mode for a data sample of 159 +- 10 pb^-1 collected by the D0 detector at the Fermilab Tevatron collider, we determine the differential cross sections as a function of the Upsilon(1S) transverse momentum for three ranges of the Upsilon(1S) rapidity: 0 < |y| < 0.6, 0.6 < |y| < 1.2, and 1.2 < |y| < 1.8.

2 data tables

Cross section per unit of rapidity times branching ratio to MU+ MU-. Systematic (DSYS) error does not include the 6.1 PCT uncertainty on the luminosity.

Normalized differential cross section for UPSI(1S) production.. Errors contain statistical and systematics (excluding luminosity error).


Measurement of the t anti-t production cross section in p anti-p collisions at s**(1/2) = 1.96-TeV using lepton + jets events with lifetime b-tagging

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 626 (2005) 35-44, 2005.
Inspire Record 681605 DOI 10.17182/hepdata.63680

We present a measurement of the top quark pair ($t\bar{t}$) production cross section ($\sigma_{t\bar{t}}$) in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV using 230 pb$^{-1}$ of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the $t\bar{t}$ purity of the selected sample. For a top quark mass of 175 GeV, we measure $\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.)$ pb, in agreement with the standard model expectation.

1 data table

TTBAR production cross section. Error contains statistical and systematics (excluding the luminosity uncertainty).


Measurement of the photon$+b$-jet production differential cross section in $p\bar{p}$ collisions at $\sqrt{s}=1.96~\TeV$

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Acharya, B.S. ; et al.
Phys.Lett.B 714 (2012) 32-39, 2012.
Inspire Record 1095100 DOI 10.17182/hepdata.61739

We present measurements of the differential cross section dsigma/dpT_gamma for the inclusive production of a photon in association with a b-quark jet for photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is the photon transverse momentum. The b-quark jets are required to have pT>15 GeV and rapidity |y_jet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider at sqrt(s)=1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the Sherpa and Pythia Monte Carlo event generators.

2 data tables

The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity/ region < 1.0.

The differential cross section as a function of PT for the production of GAMMA + B-JET in the photon |rapidity| region 1.5-2.5.