We present measurements of the rapidity and transverse-momentum distributions of the protons emitted in S+W, O+W, andp+W reactions at 200 GeV/A around the target rapidity (y=1). The rapidity density rises linearly with the transverse energy for all three systems, but the slope forp+W is much steeper than for O+W and S+W. The rapidity density forp+W is much higher than predicted by summing single nucleonnucleon collisions without any nuclear effects, indicating substantial rescattering of the produced particles. The predictions of the VENUS 3 model, including rescattering, show reasonable agreement with the data for all three systems. We do not have evidence for a strong collective flow of the outgoing particles.
No description provided.
No description provided.
No description provided.
Hadronic decays of Z 0 bosons are studied in the Delphi detector. Global event variables and singel particles inclusive distributions are compared with QCD-based predictions. The mean charged multiplicity is found to be 20.6±1.0 (stat+syst). The mean values of the sphericity, aplanarity, thrust, minor value, p in T and p out T are compared with values found at lower energy e + e − colliders.
Corrected Sphericity distribution. Statistical errors only.
Corrected Aplanarity distribution. Statistical errors only.
Corrected Q3-Q2 distribution. Statistical errors only.
None
No description provided.
No description provided.
No description provided.
A comparison is made between the properties of the final state hadrons produced in 280 GeV μp interactions and ine+e− annihilation. The Lund model of hadroproduction is used as an aid in understanding the differences observed. The hadron distributions from μp ande+e− interactions are consistent with the quark parton model assumption of environmental independence, provided that the differences in heavy quark production and hard QCD effects in the two processes are taken into account. A comparison with aK+p experiment is also made. Values are also determined for the Lund model parameters σq = 0.410 ± 0.002 ± 0.020 GeV and σ′ = 0.29−0.15 −0.13+0.09+0.10 GeV, controlling the transverse momenta in fragmentation and intrinsic transverse momenta of the struck quark respectively.
With respect to the virtual photon axis.
With respect to the sphericity axis.
With respect to the thrust axis.
Light ion collisions with carbon target at 4.2 GeV/c/N are studied. Pion multiplicity distributions, momentum and angular spectra are analysed. These data are described in terms of models assuming independent interactions of nucleons from the projectile nucleus with the target.
No description provided.
No description provided.
No description provided.
None
No description provided.
NON DIFFRACTION DISSOSIATION EVENTS.