Measurement of the photon structure function F2(gamma) with the L3 detector at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 622 (2005) 249-264, 2005.
Inspire Record 687095 DOI 10.17182/hepdata.48675

The e+e- -> e+e- hadrons reaction, where one of the two electrons is detected in a low polar-angle calorimeter, is analysed in order to measure the hadronic photon structure function F2gamma . The full high-energy and high-luminosity data set, collected with the L3 detector at centre-of-mass energies 189-209GeV, corresponding to an integrated luminosity of 608/pb is used. The Q^2 range 11-34GeV^2 and the x range 0.006-0.556 are considered. The data are compared with recent parton density functions.

16 data tables

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 11 TO 14 GeV**2.

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 14 TO 20 GeV**2.

Cross sections DELTA(SIG)/DELTA(X) in the Q**2 range 20 TO 34 GeV**2.

More…

Measurement of the photon structure function at high Q**2 at LEP

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 483 (2000) 373-386, 2000.
Inspire Record 525764 DOI 10.17182/hepdata.49964

The structure functions of real and virtual photons are derived from cross section measurements of the reaction e^+e^ -> e^+e^- + hadrons at LEP. The reaction is studied at \sqrt{s} ~ 91 GeV with the L3 detector. One of the final state electrons is detected at a large angle relative to the beam direction, leading to Q^2 values between 40 GeV^2 and 500 GeV^2. The other final state electron is either undetected or it is detected at a four-momentum transfer squared P^2 between 1 GeV^2 and 8 GeV^2. These measurements are compared with predictions of the Quark Parton Model and other QCD based models.

4 data tables

Measured values of F2 for the single-tag data as a function of X for the full Q**2 range.

Measured values of F2 for the single-tag data as a function of Q**2 for different X ranges.

The effective F2 measured in double-tag events as a function of X.

More…

Measurements of the QED structure of the photon.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 11 (1999) 409-425, 1999.
Inspire Record 495378 DOI 10.17182/hepdata.49315

The structure of both quasi-real and highly virtual photons is investigated using the reaction e+e- -> e+e-mu+mu-, proceeding via the exchange of two photons. The results are based on the complete OPAL dataset taken at e+e- centre-of-mass energies close to the mass of the Z boson. The QED structure function F_2^gamma and the differential cross-section dsigdx for quasi-real photons are obtained as functions of the fractional momentum x from the muon momentum which is carried by the struck muon in the quasi-real photon for values of Q**2 ranging from 1.5 to 400 GeV**2. The differential cross-section dsigdx for highly virtual photons is measured for 1.5< Q**2 < 30 GeV**2 and 1.5< P**2 < 20 GeV**2, where Q**2 and P**2 are the negative values of the four-momentum squared of the two photons such that Q**2 > P**2. Based on azimuthal correlations the QED structure functions F_A^gamma and F_B^gamma for quasi-real photons are determined for an average Q**2 of 5.4 GeV**2.

12 data tables

No description provided.

No description provided.

No description provided.

More…

The Q**2 evolution of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 447 (1999) 147-156, 1999.
Inspire Record 479052 DOI 10.17182/hepdata.49323

New measurements at a centre-of-mass energy s ≃183 GeV of the hadronic photon structure function F γ 2 ( x ) in the Q 2 interval, 9 GeV 2 ≤ Q 2 ≤30 GeV 2 , are presented. The data, collected in 1997 with the L3 detector, correspond to an integrated luminosity of 51.9 pb −1 . Combining with the data taken at a centre-of-mass energy of 91 GeV, the evolution of F γ 2 with Q 2 is measured in the Q 2 range from 1.2 GeV 2 to 30 GeV 2 . F γ 2 shows a linear growth with ln Q 2 ; the value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured in two x bins from 0.01 to 0.2 and is somewhat higher than predicted.

1 data table

Measured values of F2/ALPHA as a function of x. The second systematic error (DSYS) is that due to the model dependence and is the difference between the results obtained with PHOJET and TWOGAM. The full systematic error is the quadrature sum of the two systematic errors.


ZEUS results on the measurement and phenomenology of F2 at low x and low Q**2.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 7 (1999) 609-630, 1999.
Inspire Record 475922 DOI 10.17182/hepdata.44218

Measurements of the proton structure function $F_2$ for $0.6 < Q^2 < 17 {GeV}^2$ and $1.2 \times 10^{-5} < x <1.9 \times 10^{-3}$ from ZEUS 1995 shifted vertex data are presented. From ZEUS $F_2$ data the slopes $dF_2/d\ln Q^2$ at fixed $x$ and $d\ln F_2/d\ln(1/x)$ for $x < 0.01$ at fixed $Q^2$ are derived. For the latter E665 data are also used. The transition region in $Q^2$ is explored using the simplest non-perturbative models and NLO QCD. The data at very low $Q^2$ $\leq 0.65 {GeV}^2$ are described successfully by a combination of generalised vector meson dominance and Regge theory. From a NLO QCD fit to ZEUS data the gluon density in the proton is extracted in the range $3\times 10^{-5} < x < 0.7$. Data from NMC and BCDMS constrain the fit at large $x$. Assuming the NLO QCD description to be valid down to $Q^2\sim 1 {GeV}^2$, it is found that the $q\bar{q}$ sea distribution is still rising at small $x$ and the lowest $Q^2$ values whereas the gluon distribution is strongly suppressed.

15 data tables
More…

Measurement of the diffractive cross-section in deep inelastic scattering using ZEUS 1994 data

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 43-66, 1999.
Inspire Record 473108 DOI 10.17182/hepdata.44224

The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.

24 data tables

Cross section for diffractive scattering.

Cross section for diffractive scattering.

Cross section for diffracitve scattering.

More…

Study of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 436 (1998) 403-416, 1998.
Inspire Record 472644 DOI 10.17182/hepdata.49392

The hadronic photon structure function F γ 2 is studied in the reaction e + e − →e + e − hadrons at LEP with the L3 detector. The data, collected from 1991 to 1995 at a centre-of-mass energy s ≃91 GeV, correspond to an integrated luminosity of 140 pb −1 . The photon structure function F γ 2 is measured in the Q 2 interval 1.2 GeV 2 ≤ Q 2 ≤9.0 GeV 2 and the x interval 0.002< x <0.2. F γ 2 shows a linear growth with ln Q 2 . The value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured to be 0.079±0.011±0.009.

3 data tables

No description provided.

No description provided.

No description provided.


Photon structure functions and azimuthal correlations of lepton pairs in tagged gamma gamma collisions.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 438 (1998) 363-378, 1998.
Inspire Record 470997 DOI 10.17182/hepdata.49546

The reactions e + e − → e + e − e + e − and e + e − → e + e − μ + μ − , in a single tag configuration, are studied at LEP with the L3 detector. The data set corresponds to an integrated luminosity of 93.7 pb −1 at s =91 GeV. Differential cross sections are measured for 1.4 GeV 2 ≤Q 2 ≤7.6 GeV 2 . The leptonic photon structure function F γ 2 and azimuthal correlations are measured for e + e − → e + e − μ + μ − . The related structure functions F γ A and F γ B , which originate from interference terms of the scattering amplitudes, are determined for the first time.

1 data table

The systematic and statistical errors added in quadrature. F2(NAME=FA) AND F2(NAME=FB) are related structure functions FA and FB, which originate from inerference terms of the scattering amplitudes. See text for exact definition and details.


Measurement of the diffractive structure function F2(D(4) ) at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 81-96, 1998.
Inspire Record 448663 DOI 10.17182/hepdata.44431

This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.

4 data tables

The measured distribution of T, the squared momentum transfer to the virtual pluton.

Slope of the T distribution.

The structure function F2(NAME=D4).

More…

Measurement of the Q**2 evolution of the photon structure function F2(gamma).

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 411 (1997) 387-401, 1997.
Inspire Record 446673 DOI 10.17182/hepdata.47450

New measurements are presented of the photon structure function F_2^gamma(Q) at four values of Q^2 between 9 and 59 GeV/c^2 based on data collected with the OPAL detector at centre-of-mass energies of 161-172 GeV, with a total integrated luminosity of 18.1 pb^-1. The evolution of F_2^gamma with Q^2 in bins of x is determined in the Q^2 range from 1.86 to 135 GeV/c^2 using data taken at centre-of-mass energies of 91 GeV and 161-172 GeV. F_2^gamma is observed to increase with Q^2 with a slope of 1/alpha_em dF_2^gamma/dln(Q^2) = 0.10 +0.05 -0.03 measured in the range 0.1 < x < 0.6.

5 data tables

Measured values of F2 for the SW sample.

Measured values of F2 for the FD sample.

F2 for the full X range (0.1 to 0.6) as a function of Q**2. The full SW andFD sample points are tabulated for completeness but are not in the plot or fits . The first three points are previous OPAL data at sqrt(s) = 91 GeV (ZP C74(1997)33).

More…