Date

Measurement of the exclusive $\Upsilon$ production cross-section in $pp$ collisions at $\sqrt{s}=$7 TeV and 8 TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 09 (2015) 084, 2015.
Inspire Record 1373746 DOI 10.17182/hepdata.72986

A study is presented of central exclusive production of $\Upsilon(nS)$ states, where the $\Upsilon(nS)$ resonances decay to the $\mu^+\mu^-$ final state, using $pp$ collision data recorded by the LHCb experiment. The cross-section is measured in the rapidity range $2<y(\Upsilon)<4.5$ where the muons are reconstructed in the pseudorapidity range $2<\eta(\mu^\pm)<4.5$. The data sample corresponds to an integrated luminosity of 2.9 fb$^{-1}$ and was collected at centre-of-mass energies of $7$ TeV and $8$ TeV. The measured $\Upsilon(1S)$ and $\Upsilon(2S)$ production cross-sections are \begin{eqnarray} \sigma(pp \to p\Upsilon(1S)p) &=& 9.0 \pm 2.1 \pm 1.7\textrm{ pb and}\nonumber\\ \sigma(pp \to p\Upsilon(2S)p) &=& 1.3 \pm 0.8 \pm 0.3\textrm{ pb},\nonumber \end{eqnarray} where the first uncertainties are statistical and the second are systematic. The $\Upsilon(1S)$ cross-section is also measured as a function of rapidity and is found to be in good agreement with Standard Model predictions. An upper limit is set at 3.4 pb at the 95\% confidence level for the exclusive $\Upsilon(3S)$ production cross-section, including possible contamination from $\chi_b(3P)\to\Upsilon(3S)\gamma$ decays.

2 data tables

Production cross-section for the $\Upsilon(1S)$ resonance in ranges of $\Upsilon(1S)$ rapidity, where the muons are required to lie in the pseudorapidity range $2 < \eta(\mu^{\pm}) < 4.5$. The first uncertainties are statistical and the second ones are systematic.

Differential production cross-section for $\Upsilon(1S)$, where the data have been corrected for the effect of the LHCb geometrical acceptance. The statistical and systematic uncertainties are combined in quadrature.


Study of $W$ boson production in association with beauty and charm

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
Phys.Rev.D 92 (2015) 052001, 2015.
Inspire Record 1370436 DOI 10.17182/hepdata.73718

The associated production of a $W$ boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and $2.0\,{\rm fb}^{-1}$ collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The $W$ bosons are reconstructed using the $W\to\mu\nu$ decay and muons with a transverse momentum, $p_{\rm T}$, larger than 20 GeV in the pseudorapidity range $2.0<\eta<4.5$. The partons are reconstructed as jets with $p_{\rm T} > 20$ GeV and $2.2 < \eta < 4.2$. The sum of the muon and jet momenta must satisfy $p_{\rm T} > 20$ GeV. The fraction of $W+$jet events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the $W\!+\!b$ and $W\!+\!c$ production cross-sections. The ratio of the $W+$jet to $Z+$jet production cross-sections is also measured using the $Z\to\mu\mu$ decay. All results are in agreement with Standard Model predictions.

1 data table

Summary of the results. All results are reported within a fiducial region that requires a jet with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.2 < \eta < 4.2$, a muon with $p_\rm{T} > 20$ GeV in the pseudorapidity range $2.0 < \eta < 4.5$, $p_\rm{T}(\mu+j) > 20$ GeV, and $\Delta R(\mu, j) > 0.5$. For $Z+$jet events both muons must fulfill the muon requirements and $60 < M(\mu\mu) < 120$ GeV; the $Z+$jet fiducial region does not require $p_\rm{T}(\mu+j) > 20$ GeV.


Measurement of forward $\rm Z\rightarrow e^+e^-$ production at $\sqrt{s}=8$TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 05 (2015) 109, 2015.
Inspire Record 1347133 DOI 10.17182/hepdata.73305

A measurement of the cross-section for Z-boson production in the forward region of pp collisions at 8TeV centre-of-mass energy is presented. The measurement is based on a sample of $\rm Z\rightarrow e^+e^-$ decays reconstructed using the LHCb detector, corresponding to an integrated luminosity of 2.0fb$^{-1}$. The acceptance is defined by the requirements $2.0<\eta<4.5$ and $p_{\rm T}>20$GeV for the pseudorapidities and transverse momenta of the leptons. Their invariant mass is required to lie in the range 60--120GeV. The cross-section is determined to be $$ \sigma({\rm pp\to Z\to e^+e^-})=93.81\pm0.41({\rm stat})\pm1.48({\rm syst})\pm1.14({\rm lumi})\;{\rm pb}\,,$$ where the first uncertainty is statistical and the second reflects all systematic effects apart from that arising from the luminosity, which is given as the third uncertainty. Differential cross-sections are presented as functions of the Z-boson rapidity and of the angular variable $\phi^*$, which is related to the Z-boson transverse momentum.

3 data tables

Integrated cross-section for Z$\to$ e$^+$e$^-$ within the LHCb acceptance.

Differential cross-section for Z$\to$ e$^+$e$^-$ as a function of Z-boson rapidity. The first error is statistical, the second the uncorrelated experimental systematic, the third the correlated experimental systematic and the last error is the uncertainty in luminosity. The cross-sections are at the Born level, i.e. before FSR. The rightmost column gives values of the additional factor, $f_{\rm FSR}$, by which the results should be multiplied in order to give the cross-sections after FSR.

Differential cross-section for Z$\to$ e$^+$e$^-$ as a function of $\phi^*$. The first error is statistical, the second the uncorrelated experimental systematic, the third the correlated experimental systematic and the last error is the uncertainty in luminosity. The cross-sections are at the Born level, i.e. before FSR. The rightmost column gives values of the additional factor, $f_{\rm FSR}$, by which the results should be multiplied in order to give the cross-sections after FSR.