Measurement of pi+ p (polarized) analyzing power at 68.3-MeV

Wieser, R. ; Denig, A. ; von Hagel, U. ; et al.
Phys.Rev.C 54 (1996) 1930-1934, 1996.
Inspire Record 429106 DOI 10.17182/hepdata.25768

The analyzing power Ay for π+p→ scattering at 68.3 MeV has been measured at the Paul Scherrer Institut with the magnetic spectrometer LEPS. The measurements cover the angular range 40°≤θlab≤70°. The protons have been polarized in a butanol target, operated in frozen spin mode. The S31 phase shift comes out by about 1° smaller than the Koch-Pietarinen [Nucl. Phys. A 336, 331 (1980)] phase shift analysis, supporting the necessity of an alternative dispersion analysis of πN scattering to determine the σ term and the πN coupling constant. © 1996 The American Physical Society.

1 data table

The two data sets correspond to measurements with two different target compositions (see text).


Low-energy differential cross-sections of pion proton (pi+- p) scattering. 2: Phase shifts at T(pi) = 32.7-MeV, 45.1-MeV, and 68.6-MeV

Joram, C. ; Metzler, M. ; Jaki, J. ; et al.
Phys.Rev.C 51 (1995) 2159-2165, 1995.
Inspire Record 404659 DOI 10.17182/hepdata.25955

We report on measurements of the differential π±p cross section at pion energies Tπ=32.7, 45.1, and 68.6 MeV. The measurements, covering the angular range 25°≤θlab≤123°, have been carried out at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland, employing the magnet spectrometer LEPS. The absolute normalization of the π±p cross sections have been achieved by relating them to the electromagnetic cross sections of μ±12C scattering. The results are in agreement with those of our preceding measurements at Tπ=32.2 and 45.1 MeV insofar as they overlap with the region of the Coulomb nuclear interference investigated there. A comparison with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, which has formed the basis for the determination of the ‘‘experimental’’ σ term, reveals considerable deviations. These are most pronounced for the π+p cross sections at Tπ=32.7 and 45.1 MeV. Single energy partial wave fits result in S-wave contributions, which are about 1° lower in magnitude then those specified by the KH80 solution. The data at 68.6 MeV are in good agreement with the phase shift analysis.

3 data tables

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.

Statistical and systematic errors are addet in quadrature.


Single Diffraction Dissociation in $\pi^+ p$ and $K^+ p$ Interactions at 250-{GeV}/$c$

The EHS/NA22 collaboration Adamus, M. ; Azhinenko, I.V. ; Almeida, F.M.L., Jr. ; et al.
Z.Phys.C 39 (1988) 301, 1988.
Inspire Record 254506 DOI 10.17182/hepdata.15646

None

1 data table

No description provided.


The s Dependence of Proton Fragmentation by Hadrons. 2. Incident Lab Momenta 30-GeV/c - 250-GeV/c

Weisberg, H. ; Beier, E. ; Brody, H. ; et al.
Phys.Rev.D 17 (1978) 2875, 1978.
Inspire Record 122402 DOI 10.17182/hepdata.24404

Measurements of inclusive scattering in the target-fragmentation region are extended to higher incident energy. The combined data set shows departures from an approach to the asymptotic scaling limit as A+Bs−12 that are significant even at the highest energies. When these departures are taken into account, the data approach a limit that is consistent with equal cross sections induced by particles and antiparticles and with Pomeron factorization. The corrections to A+Bs−12 are so large that detailed tests of Mueller-Regge relationships are not conclusive.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Inclusive single-particle distributions in $\pi^{\pm}$ $p$ reactions at 8 and 16 {GeV/c}

Bosetti, P. ; Grassler, H. ; Kirk, H. ; et al.
Nucl.Phys.B 54 (1973) 141-160, 1973.
Inspire Record 87988 DOI 10.17182/hepdata.811

Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.

73 data tables

No description provided.

No description provided.

No description provided.

More…