Date

Compton scattering from the free and bound proton at backward angles above pi threshold.

Wissmann, F. ; Kuhr, V. ; Jahn, O. ; et al.
Nucl.Phys.A 660 (1999) 232-245, 1999.
Inspire Record 514218 DOI 10.17182/hepdata.36160

Differential cross sections for Compton scattering from the free proton at Θ γ ′ lab =130.7° in the energy region from 200 MeV to 410 MeV and for quasi-free Compton scattering from the proton bound in the deuteron at Θ γ ′ lab =148.8° in the energy region from 200 MeV to 290 MeV have been measured. The free proton data are in agreement with dispersion-theory predictions based on standard parameters. The difference of the proton polarizabilities has been extracted from the quasi-free data. Our result, α ̄ − β ̄ =[9.1±1.7( stat+syst )±1.2( mod )]×10 −4 fm 3 , is in reasonable agreement with the world average of the free proton data if the backward spin polarizability γ π is taken to be −37.6×10 −4 fm 4 as predicted by dispersion theory in agreement with many theoretical calculations. This implies that quasi-free Compton scattering may also be used to determine the electromagnetic polarizabilities of the neutron. No indication has been found of a recently suggested new contribution to γ π .

1 data table match query

No description provided.


Quasi-free Compton Scattering and the Polarizabilities of the Neutron

Kossert, K. ; Camen, M. ; Wissmann, F. ; et al.
Eur.Phys.J.A 16 (2003) 259-273, 2003.
Inspire Record 599960 DOI 10.17182/hepdata.43752

Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $\oslash$ $\times$ 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $\theta^{LAB}_\gamma=136.2^\circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(\gamma,\pi^+ n)$. The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $\alpha +\beta=15.2\pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model)$ and $\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4$.

5 data tables match query

Energy dependence of the free-proton differential cross section.

Energy dependence of the quasi-free proton differential cross section.

Energy dependence of the triple differential cross section w.r.t. the scattered proton.

More…

QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables match query

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables match query

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

Measurements of multijet event isotropies using optimal transport with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 10 (2023) 060, 2023.
Inspire Record 2663035 DOI 10.17182/hepdata.110164

A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.

75 data tables match query

IRing2 for HT2>=500 GeV, NJets>=2

IRing2 for HT2>=500 GeV, NJets>=3

IRing2 for HT2>=500 GeV, NJets>=4

More…

Polarization observables in double neutral pion photoproduction

The CBELSA/TAPS collaboration Seifen, T. ; Hartmann, J. ; Afzal, F. ; et al.
2022.
Inspire Record 2106042 DOI 10.17182/hepdata.137817

Measurements of target asymmetries and double-polarization observables for the reaction $\gamma p\to p\pi^0\pi^0$ are reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility (Bonn University) using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided transversely polarized protons. Linearly polarized photons were produced via bremsstrahlung off a diamond crystal. The data cover the photon energy range from $E_{\gamma}$=650 MeV to $E_{\gamma}$=2600 MeV and nearly the complete angular range. The results have been included in the BnGa partial wave analysis. Experimental results and the fit agree very well. Observed systematic differences in the branching ratios for decays of $N^*$ and $\Delta^*$ resonances are attributed to the internal structure of these excited nucleon states. Resonances which can be assigned to SU(6)$\times$O(3) two-oscillator configurations show larger branching ratios to intermediate states with non-zero intrinsic orbital angular momenta than resonances assigned to one-oscillator configurations.

24 data tables match query

Target asymmetry for $\pi^0\pi^0$ as a function of the polar angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.

Target asymmetry for $\pi^0\pi^0$ as a function of the $\pi^0\pi^0$ invariant mass for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.

Target asymmetry for $\pi^0\pi^0$ as a function of the $\phi^*$ angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.

More…

Measurements of the structure of quark and gluon jets in hadronic Z decays.

The ALEPH collaboration Barate, R. ; Buskulic, D. ; Decamp, D. ; et al.
Eur.Phys.J.C 17 (2000) 1-18, 2000.
Inspire Record 467225 DOI 10.17182/hepdata.49549

An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test

6 data tables match query

The measured jet broadening distributions (B) in quark and gluon jets seperately.

Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.

The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.

More…

Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities

Lundin, M. ; Adler, J.O. ; Boland, M. ; et al.
Phys.Rev.Lett. 90 (2003) 192501, 2003.
Inspire Record 586101 DOI 10.17182/hepdata.31727

Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\circ$, $125^\circ$, and $135^\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\alpha_N + \beta_N = 17.4 \pm 3.7$ and $\alpha_N - \beta_N = 6.4 \pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\alpha_p - \beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\alpha_n= 8.8 \pm 2.4$(total) $\pm 3.0$(model) and $\beta_n = 6.5 \mp 2.4$(total) $\mp 3.0$(model), respectively.

6 data tables match query

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.6 MeV.

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.9 MeV.

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 55.9 MeV.

More…

A simultaneous unbinned differential cross section measurement of twenty-four $Z$+jets kinematic observables with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 261803, 2024.
Inspire Record 2791852 DOI 10.17182/hepdata.153189

$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.

26 data tables match query

Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>

More…

Measurement of quasielastic He-3 (p, p N) scattering from polarized He-3 and the three-body ground state spin structure

Miller, M.A. ; Lee, K. ; Smith, A. ; et al.
Phys.Rev.Lett. 74 (1995) 502-505, 1995.
Inspire Record 382876 DOI 10.17182/hepdata.19645

We report measurements of spin correlations and analyzing powers in He→3(p→, 2p) and He→3(p→, pn) quasielastic scattering as a function of momentum transfer and missing momentum at 197 MeV using a polarized internal target at the Indiana University Cyclotron Facility Cooler Ring. At sufficiently high momentum transfer we find He→3(p→, pn) spin observables are in good agreement with free p−n scattering observables, and therefore that He→3 can serve as a good polarized neutron target. The extracted polarizations of nucleons in He→3 at low missing momentum are consistent with Faddeev calculations.

1 data table match query

QUASIELASTIC SCATTERING.