Compton scattering from the free and bound proton at backward angles above pi threshold.

Wissmann, F. ; Kuhr, V. ; Jahn, O. ; et al.
Nucl.Phys.A 660 (1999) 232-245, 1999.
Inspire Record 514218 DOI 10.17182/hepdata.36160

Differential cross sections for Compton scattering from the free proton at Θ γ ′ lab =130.7° in the energy region from 200 MeV to 410 MeV and for quasi-free Compton scattering from the proton bound in the deuteron at Θ γ ′ lab =148.8° in the energy region from 200 MeV to 290 MeV have been measured. The free proton data are in agreement with dispersion-theory predictions based on standard parameters. The difference of the proton polarizabilities has been extracted from the quasi-free data. Our result, α ̄ − β ̄ =[9.1±1.7( stat+syst )±1.2( mod )]×10 −4 fm 3 , is in reasonable agreement with the world average of the free proton data if the backward spin polarizability γ π is taken to be −37.6×10 −4 fm 4 as predicted by dispersion theory in agreement with many theoretical calculations. This implies that quasi-free Compton scattering may also be used to determine the electromagnetic polarizabilities of the neutron. No indication has been found of a recently suggested new contribution to γ π .

1 data table

No description provided.


Quasi-free Compton Scattering and the Polarizabilities of the Neutron

Kossert, K. ; Camen, M. ; Wissmann, F. ; et al.
Eur.Phys.J.A 16 (2003) 259-273, 2003.
Inspire Record 599960 DOI 10.17182/hepdata.43752

Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $\oslash$ $\times$ 64 cm NaI(Tl) photon detector and the G\"ottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $\theta^{LAB}_\gamma=136.2^\circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(\gamma,\pi^+ n)$. The "free" proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $\alpha-\beta= 9.8\pm 3.6(stat){}^{2.1}_1.1(syst)\pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $\alpha +\beta=15.2\pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $\alpha_n=12.5\pm 1.8(stat){}^{+1.1}_{-0.6}\pm 1.1(model)$ and $\beta_n=2.7\mp 1.8(stat){}^{+0.6}_{-1.1}(syst)\mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $\gamma^{(n)}_\pi=(58.6\pm 4.0)\times 10^{-4}fm^4$.

5 data tables

Energy dependence of the free-proton differential cross section.

Energy dependence of the quasi-free proton differential cross section.

Energy dependence of the triple differential cross section w.r.t. the scattered proton.

More…

Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities

Lundin, M. ; Adler, J.O. ; Boland, M. ; et al.
Phys.Rev.Lett. 90 (2003) 192501, 2003.
Inspire Record 586101 DOI 10.17182/hepdata.31727

Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\circ$, $125^\circ$, and $135^\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\alpha_N + \beta_N = 17.4 \pm 3.7$ and $\alpha_N - \beta_N = 6.4 \pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\alpha_p - \beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\alpha_n= 8.8 \pm 2.4$(total) $\pm 3.0$(model) and $\beta_n = 6.5 \mp 2.4$(total) $\mp 3.0$(model), respectively.

6 data tables

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.6 MeV.

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 54.9 MeV.

Centre of mass differential cross sections for deuteron compton scattering at incident photon energy 55.9 MeV.

More…

First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV

The GDH & A2 collaborations Ahrens, J. ; Altieri, S. ; Annand, J.R.M. ; et al.
Phys.Rev.Lett. 87 (2001) 022003, 2001.
Inspire Record 557596 DOI 10.17182/hepdata.41703

A direct measurement of the helicity dependence of the total photoabsorption cross section on the proton was carried out at MAMI (Mainz) in the energy range 200 < E_gamma < 800 MeV. The experiment used a 4$\pi$ detection system, a circularly polarized tagged photon beam and a frozen spin target. The contributions to the Gerasimov-Drell-Hearn sum rule and to the forward spin polarizability $\gamma_0$ determined from the data are 226 \pm 5 (stat)\pm 12(sys) \mu b and -187 \pm 8 (stat)\pm 10(sys)10^{-6} fm^4, respectively, for 200 < E_\gamma < 800 MeV.

1 data table

Two absorption cross sections, SIG(C=3/2) and SIG(C=1/2), are determined bytwo relative spin configurations, namely parallel and antiparallel. N=RE.


Measurement of the branching ratio for the process b --> tau- anti-nu/tau X.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Åkesson, P.F. ; et al.
Phys.Lett.B 520 (2001) 1-10, 2001.
Inspire Record 561580 DOI 10.17182/hepdata.49743

The inclusive branching ratio for the process b -> tau nu X has been measured using hadronic Z decays collected by the OPAL experiment at LEP in the years 1992-2000. The result is: BR(b -> tau nu X) = (2.78 +/- 0.18 +/- 0.51)% This measurement is consistent with the Standard Model expectation and puts a constraint of tan(beta) / M(H+/-) < 0.53 GeV-1 at the 95% confidence level on Type II Two Higgs Doublet Models.

1 data table

TAN(BETA) is the two-Higgs-doublet model parameter, while M_H is the mass of charged Higgs.


eta-meson production in proton-proton collisions at excess energies of 40 and 72 MeV

Petren, H. ; Bargholtz, Chr. ; Bashkanov, M. ; et al.
Phys.Rev.C 82 (2010) 055206, 2010.
Inspire Record 882234 DOI 10.17182/hepdata.60320

The production of η mesons in proton-proton collisions has been studied using the WASA detector at the CELSIUS storage ring at excess energies of Q=40 MeV and Q=72 MeV. The η was detected through its 2γ decay in a near-4π electromagnetic calorimeter, whereas the protons were measured by a combination of straw chambers and plastic scintillator planes in the forward hemisphere. About 6.9×104 and 9.3×104 events were found at Q=40 MeV and Q=72 MeV, respectively, with background contributions of less than 5%. A simple parametrization of the production cross section in terms of low partial waves was used to evaluate the acceptance corrections. Strong evidence was found for the influence of higher partial waves. The Dalitz plots show the presence of p waves in both the pp and the η{pp} systems and the angular distributions of the η in the center-of-mass frame suggest the influence of d-wave η mesons.

6 data tables

Differential cross section for pp -> pp eta at proton beam energies of 1360 and 1445 MeV (excess energies of of 40 and 72 MeV). The angle theta* is that between the eta momentum and that of the beam in the overall CM system. The error shown in the table is the combined statistical and systematic uncertainty, excluding the overall normalization error.

Differential cross section for pp -> pp eta at proton beam energies of 1360 and 1445 MeV (excess energies of of 40 and 72 MeV). The angle theta** is that between the pp relative momentum and that of the eta in the diproton rest frame. The error shown in the table is the combined statistical and systematic uncertainty, excluding the overall normalization error.

Differential cross section for pp -> pp eta at a proton beam energy of 1360 MeV (excess energy Q = 40 MeV) with respect to the square of the final pp invariant mass. Note the change in units with respect to the figure.

More…

Measurement of the forward charged particle pseudorapidity density in pp collisions at sqrt{s} = 7 TeV with the TOTEM experiment

The TOTEM collaboration Antchev, G ; Atanassov, I. ; Avati, V. ; et al.
EPL 98 (2012) 31002, 2012.
Inspire Record 1115294 DOI 10.17182/hepdata.59403

The TOTEM experiment has measured the charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV for 5.3<|eta|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidity range. This extends the analogous measurement performed by the other LHC experiments to the previously unexplored forward eta region. The measurement refers to more than 99% of non-diffractive processes and to single and double diffractive processes with diffractive masses above ~3.4 GeV/c^2, corresponding to about 95% of the total inelastic cross-section. The dN_{ch}/deta has been found to decrease with |eta|, from 3.84 pm 0.01(stat) pm 0.37(syst) at |eta| = 5.375 to 2.38 pm 0.01(stat) pm 0.21(syst) at |eta| = 6.375. Several MC generators have been compared to data; none of them has been found to fully describe the measurement.

1 data table

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7 TeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >40 MeV and 5.3< absolute(pseudorapidity) <6.5.


Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 95 (2011) 41001, 2011.
Inspire Record 922651 DOI 10.17182/hepdata.59485

Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.

1 data table

The measured differential elastic cross section. Data from the tabulation in CERN-PH-EP-2012-239.


Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Phys.Lett.B 717 (2012) 383-389, 2012.
Inspire Record 1115721 DOI 10.17182/hepdata.59737

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

54 data tables

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.

More…

Inclusive Measurement of Diffractive Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 72 (2012) 2074, 2012.
Inspire Record 1094384 DOI 10.17182/hepdata.60030

The diffractive process ep \rightarrow eXY, where Y denotes a proton or its low mass excitation with MY < 1.6 GeV, is studied with the H1 experiment at HERA. The analysis is restricted to the phase space region of the photon virtuality 3 \leq Q2 \leq 1600 GeV2, the square of the four-momentum transfer at the proton vertex |t| < 1.0 GeV2 and the longitudinal momentum fraction of the incident proton carried by the colourless exchange xIP < 0.05. Triple differential cross sections are measured as a function of xIP, Q2 and beta = x/xIP where x is the Bjorken scaling variable. These measurements are made after selecting diffractive events by demanding a large empty rapidity interval separating the final state hadronic systems X and Y . High statistics measurements covering the data taking periods 1999-2000 and 2004-2007 are combined with previously published results in order to provide a single set of diffractive cross sections from the H1 experiment using the large rapidity gap selection method. The combined data represent a factor between three and thirty increase in statistics with respect to the previously published results. The measurements are compared with predictions from NLO QCD calculations based on diffractive parton densities and from a dipole model. The proton vertex factorisation hypothesis is tested.

57 data tables

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=3.5 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=5.0 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

The reduced diffractive cross section multiplied by X_Pomeron at XP=0.0003 and Q^2=6.5 GeV^2 . The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.

More…