A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse-femtobarns. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 +/- 0.03 (stat) +/- 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top antiquark.
The normalized differential cross section as a function of unfolded $\cos\theta_{\mu}^{*}$ for top quark and antiquark.
ω photoproduction off hydrogen and deuterium has been studied with the tagged photon beam of the ELSA accelerator in Bonn for photon energies up to 2.0 GeV. The ω meson has been identified via the ω → π$^{0}$ γ → γγγ decay mode, using the combined setup of the Crystal Barrel/TAPS detector systems. Both inclusive and exclusive analyses have been carried out. Differential and total cross-sections have been derived for ω mesons produced off free protons and off protons and neutrons bound in deuterium. The cross-section for the production off the bound neutron is found to be a factor of ≈ 1.3 larger than the one off the bound proton in the incident beam energy region 1.2 GeV < E$_{γ}$ < 1.6 GeV. For higher incident beam energies this factor goes down to ≈ 1.1 at 2.0 GeV. The cross-sections of this work have been used as normalization for transparency ratio measurements.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.125-1.150 GeV.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.150-1.175 GeV.
Differential cross-sections of $\omega$ mesons produced off the free proton versus $\cos(\theta^\omega_{\mathrm{c.m.}})$ and versus the momentum transfer to the nucleon, $t$, for incident photon energy $E_\gamma$ = 1.175-1.200 GeV.
The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb-1, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (|eta|<1.37 and 1.52<|eta|<2.37) and with an angular separation Delta R>0.4, is 44.0 (+3.2) (-4.2) pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins--Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.
Experimental cross-section values per bin in PB*GEV**-1 for M(2GAMMA).
Experimental cross-section values per bin in PB*GEV**-1 for PT(2GAMMA).
Experimental cross-section values per bin in PB*RAD**-1 for DELTA(PHI(2GAMMA)).
Photoproduction of $\eta$ mesons off $^{12}$C, $^{40}$Ca, $^{93}$Nb, and $^{nat}$Pb nuclei has been measured with a tagged photon beam with energies between 0.6 and 2.2 GeV. The experiment was performed at the Bonn ELSA accelerator with the combined setup of the Crystal Barrel and TAPS calorimeters. It aimed at the in-medium properties of the S$_{11}$(1535) nucleon resonance and the study of the absorption properties of nuclear matter for $\eta$ mesons. Careful consideration was given to contributions from $\eta\pi$ final states and secondary production mechanisms of $\eta$-mesons e.g. from inelastic $\pi N$ reactions of intermediate pions. The analysis of the mass number scaling shows that the nuclear absorption cross section $\sigma_{N\eta}$ for $\eta$ mesons is constant over a wide range of the $\eta$ momentum. The comparison of the excitation functions to data off the deuteron and to calculations in the framework of a BUU-model show no unexplained in-medium modifications of the S$_{11}$(1535).
Inclusive energy distribution for incident photon energy 0.650 to 0.835 GeV.
Inclusive energy distribution for incident photon energy 0.835 to 1.050 GeV.
Inclusive energy distribution for incident photon energy 1.050 to 1.550 GeV.
The exclusive reactions $\gamma p \to K^{*0} \Sigma^+(1189)$ and $\gamma p \to K^{0} \pi^{0}\Sigma^+(1189)$, leading to the p 4$\pi^{0}$ final state, have been measured with a tagged photon beam for incident energies from threshold up to 2.5 GeV. The experiment has been performed at the tagged photon facility of the ELSA accelerator (Bonn). The Crystal Barrel and TAPS detectors were combined to a photon detector system of almost 4$\pi$ geometrical acceptance. Differential and total cross sections are reported. At energies close to the threshold, a flat angular distribution has been observed for the reaction $\gamma p\to K^{0} \pi^{0}\Sigma^+$ suggesting dominant s-channel production. $\Sigma^*(1385)$ and higher lying hyperon states have been observed. An enhancement in the forward direction in the angular distributions of the reaction $\gamma p \to K^{*0}\Sigma^+$ indicates a $t$-channel exchange contribution to the reaction mechanism. The experimental data are in reasonable agreement with recent theoretical predictions.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1500-1700 and 1700-1850 MeV.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 1850-2000 and 2000-2150 MeV.
Differential cross section D(SIG)/DCOS(THETA(SIG+)) for the GAMMA P --> K0 PI0 SIGMA+ reaction for beam energies 2150-2300 and 2300-2500 MeV.
Using a liquid hydrogen bubble chamber of the ITEP, 80 cm in diameter, a study was made of the 3 H + p → p + n + d reaction with an incident momentum of 5 GeV/c for the tritium nuclei. The reaction cross section was 20.4 ± 0.2 mb. The angular, momentum and mass distributions of the reaction products in the 4π geometry have been obtained. We have separated the phase-space regions corresponding to quasi-free pn scattering and to the final-state Nd interaction. In the region of quasi-free pn scattering various experimental spectra are compared with the theoretical predictions, by using pole diagrams with nuclear vertex functions for three NN potentials: the Yamaguchi potential, the RSC potential and the potential in the quark-compound bag model. In the mass spectra of pn, pd and nd systems no evidence for the exhibition of two- and three-baryon resonances has been obtained.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
DATA WITHOUT MOMENTUM REJECTION.
No description provided.
No description provided.
The reaction of tp → pdn in 4π geometry was investigated by exposition of an 80 cm liquid hydrogen bubble chamber to a t-nucleus beam of 2.5 GeV/ c momentum. The main characteristics of the reaction are described reasonably well by the pole approximation in the absolute normalization and without free parameters.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.