The PHENIX experiment has measured the spin alignment for inclusive $J/\psi\rightarrow e^{+}e^{-}$ decays in $p$+$p$ collisions at $\sqrt{s}=510$ GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of $0.0
$\lambda_{\theta}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.
$\lambda_{\theta}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.
$\lambda_{\phi}$ measured in $J/\psi$ transverse momentum bins of 0.0 < $p_T$ < 3.0 GeV/$c$ and 3.0 < $p_T$ < 10.0 GeV/$c$ overlaid with NRQCD predictions in the Helicity and Collins-Soper frames.
We have measured the cross section and single spin asymmetries from forward $W^{\pm}\rightarrow\mu^{\pm}\nu$ production in longitudinally polarized $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons.
Single-spin asymmetries at forward $A^{FW}_L$ and backward $A^{BW}_L$ rapidities for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for results in 2013 and 2012, plus combined results for both years.
The total $W$ boson production cross sections for $p$+$p$ collisions at $\sqrt{s}$ = 510 GeV for $\sigma$($W^+$ $\rightarrow$ $\mu^+$) and $\sigma$($W^-$ $\rightarrow$ $\mu^-$).
The transverse momentum ($p_\mathrm{t}$) spectrum of prompt D$^0$ mesons and their antiparticles has been measured via the hadronic decay channels D$^0 \to \mathrm{K}^- \pi^+$ and $\overline{\mathrm{D}}^0 \to \mathrm{K}^+ \pi^-$ in pp and PbPb collisions at a centre-of-mass energy of 5.02 TeV per nucleon pair with the CMS detector at the LHC. The measurement is performed in the D$^0$ meson $p_\mathrm{t}$ range of 2-100 GeV and in the rapidity range of $|y| < $1. The pp (PbPb) dataset used for this analysis corresponds to an integrated luminosity of 27.4 pb$^{-1}$ (530 $\mu$b$^{-1}$). The measured D$^0$ meson $p_\mathrm{t}$ spectrum in pp collisions is well described by perturbative QCD calculations. The nuclear modification factor, comparing D$^0$ meson yields in PbPb and pp collisions, was extracted for both minimum-bias and the 10% most central PbPb interactions. For central events, the D$^0$ meson yield in the PbPb collisions is suppressed by a factor of 5-6 compared to the pp reference in the $p_\mathrm{t}$ range of 6-10 GeV. For D$^0$ mesons in the high-$p_\mathrm{t}$ range of 60-100 GeV, a significantly smaller suppression is observed. The results are also compared to theoretical calculations.
Nuclear modification factor of $(D^{0}+\overline{D}\hspace{.01cm}^{0})/2$ as a function of $p_{T}$ in the centrality range $0-100\%$ and $0-10\%$.
The $p_{T}$-differential production cross section of $(D^{0}+\overline{D}\hspace{.01cm}^{0})/2$ in pp collisions.
The $p_{T}$-differential production yields of $(D^{0}+\overline{D}\hspace{.01cm}^{0})/2$ divided by the nuclear overlap functions $T_{AA}$ for PbPb collisions in the $0-100\%$ and $0-10\%$ centrality ranges.
The cross section and transverse single-spin asymmetries of $\mu^{-}$ and $\mu^{+}$ from open heavy-flavor decays in polarized $p$+$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at $\sqrt{s}=200$ GeV, these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity ($1.4<|y|<2.0$) over the transverse momentum range of $1.25
$A_N$ of negatively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.
$A_N$ of positively-charged muons from open heavy-flavor decays as a function of $p_T$ in the backward ($x_F$ < 0) and forward ($x_F$ > 0) regions.
$A_N$ of negatively-charged and positively-charged muons from open heavy-flavor decays as a function of $x_F$, where $x_F$ > 0 is along the direction of the polarized proton.
We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $p$+$p$ collisions at $\sqrt{s_{NN}}=200$~GeV. The $e^+e^-$ pair yield from $b\bar{b}$ and $c\bar{c}$ is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and $p_T$. We used three different event generators, {\sc pythia}, {\sc mc@nlo}, and {\sc powheg}, to simulate the $e^+e^-$ spectra from $c\bar{c}$ and $b\bar{b}$ production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to $4\pi$, significant differences are observed for the total cross section. These difference are less pronounced for $b\bar{b}$ than for $c\bar{c}$. The same model dependence was observed in already published $d$+$A$ data. The $p$+$p$ data are also directly compared with $d$+$A$ data in mass and $p_T$, and within the statistical accuracy no nuclear modification is seen.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $c\bar{c}$ in the PHENIX acceptance to the number of $c\bar{c}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $c\bar{c}$ cross sections determined in this paper.
Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $b\bar{b}$ in the PHENIX acceptance to the number of $b\bar{b}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $b\bar{b}$ cross sections determined in this paper.
Summary of $c\bar{c}$ and $b\bar{b}$ cross sections measured in $p$+$p$ collisions using three different generators, PYTHIA, MC@NLO, and POWHEG.
PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $\pi^0$ production at midrapidity from $p$$+$$p$ collisions at $\sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $\pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $\sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $\pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $\Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $x\sim0.01$, and thus provide additional constraints on the value of $\Delta G$. The results confirm the evidence for nonzero $\Delta G$ using a different production channel in a complementary kinematic region.
The neutral pion production cross section at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV as a function of $p_T$ and NLO pQCD calculations for theory scales $\mu = p_T/2$ (dotted line), $p_T$ (solid line) and 2$p_T$ (dashed line), with $\mu$ representing equal factorization, renormalization, and fragmentation scales.
$A_{LL}$ with point-to-point uncertainty $\delta A_{LL}$ vs $p_T$ for $\pi^0$ production at midrapidity in $p$ + $p$ collisions at $\sqrt{s}$ = 510 GeV. Not included in the figure/table are the correlated for all points scale systematic uncertainty of 6.5% (scales both the values and point-to-point uncertainties by the same factor). Correlated relative luminosity (shift) uncertainity of 3.6e-4 (shifts all points by the same value).
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.
Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.
$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.
$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.