Results are presented concerning K − d and K − n elastic scattering at an incident momentum of 4.5 GeV/ c . The high-energy Glauber formalism has been used in analyzing the data in which the nucleon scattering amplitudes are parameterized and employing the spherical and quadrupole deuteron form factors. An impulse approximation analysis of the K − n differential scattering cross section fitted to a single exponential of the form d σ /d t ) 0 e Bt , leads to the result (d σ /d t ) 0 = 21.3 + mn ; 5.5 mb/(GeV/ c ) 2 and B = 6.9 + mn ; 0.5 (GeV/ c ) −2 . A global fit has been made to existing K + mn; N two-body scattering data at this energy in order to determine the scattering amplitudes. It was found that the K − n and K − p elastic amplitudes are dominantly imaginary with a relatively small contribution from spin-flip amplitudes. The slopes of the differential elastic cross sections for K − n and K − p are nearly equal, as are those for K + n and K + p. However, the value of the slope for K + is smaller than that for K − at this energy.
No description provided.
No description provided.
No description provided.
We present experimental results on a number of K − p reactions at 14.3 GeV/ c that have three bodies in the final state. The final states are K − ω p , K − π p , Λπ + π − , Λ K + K − , Λp p , K ∗ − ω p , Λ(1520) K + K − and Λ(1520) p p . Whenever, with one exception explained by the Zweig rule, there is a K − or a proton in the final state, there is a diffractive-like threshold enhancement in the mass spectrum of the two recoiling particles. These enhancements account for a large fraction of the events in all but the Λπ + π − final state, where they cannot occur, and which is dominated by resonance production. We find evidence for the Q 1 (1300) decaying into K − ω .
THE DIFFRACTION DISSOCIATION CROSS SECTIONS ARE FOR DIFFRACTIVE THRESHOLD ENHANCEMENTS IN THE TWO-BODY MASS SPECTRA (WITHIN 500 MEV CM ENERGY OF THRESHOLD).
From the study of the reaction π − p→p F p p π − using a fast proton (p F ) trigger device in the CERN Omega spectrometer, we find evidence for two narrow p p states produced mainly in association with a Δ° (1232) and a N° (1520). The statistical significance of each peak is greater than 6 standard deviations. Masses and natural widths of these resonances are respectively M = 2020 ± 3 MeV , Λ 1 = 24 ± 12 MeV and M 2 = 2204 ± 5 MeV, Λ 2 = 16 −16 +20 MeV. Our data are consistent with a small production of the narrow ∼ 1935 MeV resonance already reported. Production cross sections for these new p p resonances are given.
ERRORS TAKE INTO ACCOUNT STATISTICAL ERRORS AND BACKGROUND SUBTRACTION UNCERTAINTY BUT NOT ACCEPTANCE CORRECTIONS UNCERTAINTY OF 15 PCT.
We present experimental results and a partial-wave analysis of the low-mass ( K π) 0 systems produced in the reactions K − p → K π N at 14.3 GeV/ c . The main results concern the production mechanisms of the K ∗ (890) and K ∗ (1420) . We also extract the s-wave component of the K π system as a function of mass.
THE ERRORS QUOTED (EXCEPT FOR THE FIRST REACTION) ARE MAINLY AN ESTIMATE OF THE SYSTEMATIC UNCERTAINTIES.
No description provided.
No description provided.
We report on inclusive production of J ψ (3.1)-mesons observed in e + e − -annihilation in the energy range s = 4.0–5.0 GeV . After substraction of the radiative tail of the ψ(3.7) direct production of the J ψ (3.1) is found to be in the order of 0.1% of the total hadronic cross section. No enhancements are seen at s = 4.03 GeV and 4.4 GeV. The level is in agreement with expectations from violation of the Zweig-rule.
THIS IS 0.13 PCT OF THE TOTAL HADRONIC CROSS SECTION.
We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
THE DATA GIVEN HERE AT 9.3 GEV AND ABOVE ARE REPORTED IN C. BERGER ET AL., PL 104B, 79 (1981). THE 12.0 AND 30 GEV DATA WERE TAKEN AT PETRA.
No description provided.
No description provided.
Inclusive φ production is studied in π − p collisions at 16 GeV/ c . The φ cross section for Feynman variable x φ > 0.2 is found to be (15.5 ± 3.6) μb. This leads to an extrapolated cross section of (29.9 ± 7.0) μb for x φ > 0.0. Fitting the momentum transfer squared distribution of the φ to the form e −bp 2 T gives an average slope of b = (2.4 ± 0.3) (GeV/ c −2 for x φ > 0.5.
No description provided.
No description provided.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
Topological and channel cross sections are given for annihilation and inelastic final states produced in p p interactions at 9.1 GeV/c. Cross sections for prominent resonances in specific channels and charged pion, ϱ 0 and Δ ++ inclusive cross sections are also presented.
No description provided.
FITTED FORWARD D(SIG)/DT = 153 +- 8 MB/GEV**2.
CHANNEL CROSS SECTIONS FOR 2, 4, 6, AND 8 PRONG REACTIONS.
None
ANNIHILATION INTO CHARGED PION OR KAON PAIRS. THE SEPARATE CROSS SECTIONS FOR PIONS AND KAONS ARE CALCULATED ASSUMING SIG(K+K-)/SIG(PI+PI-) IS 0.33 +- 0.05 FROM INTERPOLATION OF OTHER EXPERIMENTS.
Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.
FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.
'PPD'. PERIPHERAL OMEGA PRODUCTION.
No description provided.