We have measured the production of prompt positrons in pp collisions at √ s = 63 GeV and y = 0 in the p T interval 0.12< p T <1.0 GeV/c. The results indicate that the production of positrons at low p T (<0.4 GeV/ c ) is proportional to the square of the mean multiplicity in the central region | y | < 1. Such a quadratic dependence is not expected from final-state sources such as hadronic bremsstrahlung or hadronic decays, but is natural in models where low mass electron pairs are produced by interactions of constituents created during the collision.
No description provided.
No description provided.
No description provided.
We present the B( d θ d y ) y=0 for J /ψ over thefull range of ISR energies and for ϒ at √ s = 53 and 63 GeV, using their dielectron decay mode. The average transverse momentum and the decay angles are presented. We found ( p T ) = 1.75 ± 0.19 GeV for ϒ, being higher than ( p T ) of the continuum and rising with √s. We present a comparison of the cross sections of J/ψ and ϒ with those of the continuum, at the same masses, as a function of √s. An appropriate scaling of the hadronic production of quark-antiquark narrow bound states involving ⋉, J/ψ, ψ′, ϒ, and ϒ′ is presented as a function of m /√ s at y = 0, and is compared with Drell-Yan scaling.
No description provided.
UPSILON HERE = UPSILON+UPSILON PRIME.
Data from a study of electron pairs produced in pp collisions (√ s = 5 and 63 GeV) are used to extend measurements of the scaling function down to m /√ s ≈ 0.07 (4.5 < m < 19 GeV). The dilepton continuum can be described by the scaling formula (fx475-1)
No description provided.
No description provided.
Measurements of the cross section for the production of electron pairs with invariant masses between 4 and 8.7 GeV are presented as a function of the centre-of-mass energy ( s = 28 to s = 62 GeV ) of the colliding proton beams. A significant excess of events is observed in the region 8.7 to 10.3 GeV; these are ascribed to the ϒ(9.5 GeV) resonances and estimates of the production cross sections are given.
Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).
Axis error includes +- 40/40 contribution (Due to the uncertainty in efficiency).
The inclusive production of π 0 at large values of p T in pp collisions at the ISR has been studied. In this experiment the two photons are resolved and separately measured for p T values of up to 6 GeV/ c , giving confidence that the desired signal has been separated from various backgrounds.
No description provided.
The inclusive η production cross section at the CERN ISR has been measured for p T values of up to 11 GeV/ c . We find that the η π 0 cross-section ratio has an average value of 0.55 ± 0.07 and varies little with p T .
No description provided.
Inclusive π 0 production at 90° has been studied at the ISR at s 1 2 = 52.7 and 62.4 GeV over the p T range from 7 to 15 GeV/ c . The two photons from π 0 decay yielded overlapping electromagnetic showers in the liquid-argon-Pb plate calorimeter detector system. Any direct photon production is included in these measurements. For large values of p T , the cross section is observed to decrease with p T more slowly than the p T −8 behaviour which has been observed at lower values of p T .
No description provided.
The inclusive cross-section for π0 production near 90° inpp collisions at the CERN Intersecting Storage Rings has been studied for thepT range 3<pT<16GeV/c at four different centre-of-mass energies (\(\sqrt s = 30.6\), 44.8, 52.7, and 62.8 GeV). In this experiment the two photons from the π0→yy decay were resolved and measured separately forpT values up to 10 GeV/c. Results indicate an agreement with thepT−8 behaviour for the lower values ofpT and a slower decrease of the cross-section for the higher values ofpT. The high-pT data deviate from the scaling expressionpT−nF(xT), which holds for the lowerpT values (pT<8GeV/c).
USING RETRACTED GEOMETRY.
USING SUPER-RETRACTED GEOMETRY.
USING SUPER-RETRACTED GEOMETRY.
We have searched for direct photons of low PT (≤1.0 GeV/c) at θc.m.=90° in pp collisions at √s =63 GeV. We used two independent methods: direct detection in NaI crystals and conversion to e+e− pairs. No signal is observed; the photon spectrum is well described by the decay of hadrons. The result is consistent with a direct low-PT photon signal reported at √s =12 GeV, but excludes a rapid growth of soft-photon production with √s .
No description provided.
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>