Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.
DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).
DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).
No description provided.
None
No description provided.
No description provided.
No description provided.
Results are presented on the inclusive photoproduction of λ and λ for incident photon energies between 25 and 70 GeV. The slope parameter of the p T 2 distribution is found to be 2.83±0.1 GeV −2 for λ and 3.28±0.25 GeV −2 for λ . The x F distributions, measured in the range −0.2 to 0.7, show that while λ are produced centrally, λ production extends to more negative values of x F ; the shapes show no energy dependence and are similar to those in pion-induced reactions. The polarization of the produced λ is less than 10%. The results are discussed in terms of vector dominance and quark fusion models.
No description provided.
No description provided.
No description provided.
The total e + e − annihilation onto hadron has been measured at CM energies between 33.00 and 36.72 GeV and between 38.66 and 46.78 GeV in steps of 20 and 30 MeV respectively. The average of the ratio R = σ ( e + e − → hadrons )/ σ is 〈 R 〉=3.85±0.12 and 〈 R 〉=4.04±0.10 for the two energy ranges. The systematic error on 〈 R 〉 is 0.31. Both values are consistent with the expectation for the known coloured quarks u, d, s, c and b. No evidence was found for the production of new quarks. If the largest fluctuation in R is interpreted as a narrow resonance, it corresponds to a product of the electronic width and the hadronic branching ratio Γ ee B had >2.9 keV at the 95% confidence level, well below the value expected for the toponium vector ground state with charge 2 3 e . The observed number of aplanar final states rules out the continuum production of a a new heavy flavour with pointlike cross section up to a CM energy of 45.4 GeV for a quarck charge of 1 3 e . and up to 46.6 GeV for 2 3 e at the 95% confidence level.
ENERGY SCANS IN 20(30) MEV STEPS.
No description provided.
We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.
No description provided.
Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.
Measurements of the reaction γ p → p π + π − π + π − are presented, in which π + π − π + π − systems with masses up to 3 GeV are produced from fragmentation of the incident photon. The reaction is dominated by production of the large peak of the ϱ′(1600) meson and, at higher masses ≳2 GeV, y production of jet-like 4 π systems. The ϱ′(1600) meson is produced by a predominantly s -channel helicity conserving mechanism. At higher masses there are also indications of ϱπ peaks, of masses 1.3 GeV (the A 2 meson) and 1.75 GeV, produced with a recoiling π meson by a mechanism consistent with the Deck effect.
CORRECTED FOR TAILS OF BREIT-WIGNER RESONANCE USED IN FIT AND ALLOWING FOR 10 PCT BACKGROUND.
The reaction γ p→K + K − p has been investigated with photons in the energy range of 20< E γ <36 GeV and with K + K − pairs in the mass range of M K + K − <2.0 GeV. The production of the φ(1019) contributes with a cross section σ ( γ p → φ p) × BR( φ →K + K − ) = 240±6 nb with an additional systematic error of ±20 nb. In the higher mass range of 1.05< M K + K − <2.0 GeV the production of K + K − pairs yields a cross section σ ( γ p→K + K − p) = 160±8 nb with an additional systematic error of +40 −30 nb.
No description provided.
K+ K- PRODUCTION ABOVE PHI MASS.
No description provided.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Mu-pair cross sections.
Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.
Forward-backward asymmetry.
We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.
No description provided.
No description provided.
A dipion enhancement of mass 1.59 GeV and width 0.23 GeV is observed in the channel γp→π + π − p. The spin-parity of the enhancement is consistent with being 1 − .
No description provided.