Date

Photoproduction of neutral pions on hydrogen at photon energies between 200 and 440 mev

Fischer, G. ; Fischer, H. ; Von Holtey, G. ; et al.
Nucl.Phys.B 16 (1970) 93-101, 1970.
Inspire Record 62733 DOI 10.17182/hepdata.16659

Differential cross sections for neutral-pion photoproduction on hydrogen in the region of the first resonance have been measured by two independent experiments detecting the recoil protons. The results of both measurements have been combined into one set of cross sections covering the photon energy range from 200 to 440 MeV at pion c.m. angles between 50 and 160 degrees.

55 data tables

No description provided.

No description provided.

No description provided.

More…

DCS for π − p elastic scattering from 1.2 to 3.0 GeV/ c and phase shift analysis

Aplin, P.S. ; Cowan, I.M. ; Gibson, W.M. ; et al.
Nucl.Phys.B 32 (1971) 253-284, 1971.
Inspire Record 1104030 DOI 10.17182/hepdata.69638

Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.

31 data tables

No description provided.

No description provided.

No description provided.

More…

THE ANGULAR DISTRIBUTION OF THE PHOTOPRODUCTION OF POSITIVE PIONS FROM HYDROGEN BY 187-MeV GAMMA RAYS

Lewis, G.M. ; Leith, David W.G.S. ; Thomas, D.L. ; et al.
Nuovo Cim. 27 (1963) 384, 1963.
Inspire Record 8502 DOI 10.17182/hepdata.37716

The differential cross-section for π+ photoproduction from hydrogen by γ-rays of laboratory energy 187 MeV has been measured at four angles. Two identical counter systems, designed to detect low energy pions unambiguosly in intense electron and γ-ray backgrounds, were used in conjunction with a cylindrical liquid hydrogen target, of very low boil-off rate. The cross-sections at laboratory angles of 39.2°, 66.7°, 111.6°, and 134° are 7.49±0.47, 8.10±0.57, 8.36±0.61 and 9.54±0.61, ·10−30cm2/sr, respectively, where the assigned errors refer only to the relative values. The absolute cross-sections are in substantial agreement with the dispersion theory and confirm the front to back asymmetry.

1 data table

No description provided.