Total Cross-Sections of pi+-, K+-, p, and anti-p on Protons and Deuterons Between 23-GeV/c and 280-GeV/c

Carroll, A.S. ; Chiang, I.-H. ; Kycia, T.F. ; et al.
Phys.Lett.B 61 (1976) 303-308, 1976.
Inspire Record 98502 DOI 10.17182/hepdata.27688

New measurements are reported of total cross sections for π ± , K ± , p and p on protons and deuterons at 11 momenta between 23 and 280 GeV/ c .

1 data table match query

No description provided.


Measurement of the $\Upsilon(1S), \Upsilon(2S)$, and $\Upsilon(3S)$ Cross Sections in $pp$ Collisions at $\sqrt{s}$ = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 727 (2013) 101-125, 2013.
Inspire Record 1225274 DOI 10.17182/hepdata.60518

The $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 $\pm$ 1.4 inverse picobarns of proton-proton collisions at $\sqrt{s}$ = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the $\Upsilon$ transverse momentum range $p_{t}^{\Upsilon} \lt$ 50GeV and rapidity range |$y^\Upsilon$| $\lt$ 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are \begin{equation*}\sigma(pp \to \Upsilon(1S) X) . B(\Upsilon(1S) \to \mu^+ \mu^-) = (8.55 \pm 0.05^{+0.56}_{-0.50} \pm 0.34) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(2S) X) . B(\Upsilon(2S) \to \mu^+ \mu^-) = (2.21 \pm 0.03^{+0.16}_{-0.14} \pm 0.09) nb,\end{equation*} \begin{equation*}\sigma(pp \to \Upsilon(3S) X) . B(\Upsilon(3S) \to \mu^+ \mu^-) = (1.11 \pm 0.02^{+0.10}_{-0.08} \pm 0.04) nb, \end{equation*} where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements.

1 data table match query

The fiducial and acceptance corrected UPSI(3S) production cross sections (times di-muon branching ratio) as a function of PT for the |rapidity| range 2.0 to 2.4. Note these are integrated cross sections and the acceptance-corrected cross sections assume the UPSI(3S) are unpolarized with the variations due to the 4 extreme polarization scenarios shown in the last 4 columns. The fiducial cross sections do not need to make any assumptions on the polarizations scenarios. The luminosity uncertainty of 4% is not included in the systematic errors.


Search for Supersymmetry in pp Collisions at sqrt(s) = 7 TeV in Events with Two Photons and Missing Transverse Energy

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 106 (2011) 211802, 2011.
Inspire Record 891482 DOI 10.17182/hepdata.57149

A search for supersymmetry in the context of general gauge-mediated (GGM) breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment at the LHC. The search is performed using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for GGM supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.

1 data table match query

95 PCT CL upper limits to cross section and the GGM acceptance as a function of Gluino mass for Squark mass 400 GeV and Neutralino mass 150 GeV.


Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV

Glander, K.H. ; Barth, J. ; Braun, W. ; et al.
Eur.Phys.J.A 19 (2004) 251-273, 2004.
Inspire Record 626695 DOI 10.17182/hepdata.51677

The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.

1 data table match query

LAMBDA polarization.


Search for anomalous production of events with three or more leptons in $pp$ collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 90 (2014) 032006, 2014.
Inspire Record 1291940 DOI 10.17182/hepdata.64435

A search for physics beyond the standard model in events with at least three leptons is presented. The data sample, corresponding to an integrated luminosity of 19.5 inverse femtobarns of proton-proton collisions with center-of-mass energy sqrt(s) = 8 TeV, was collected by the CMS experiment at the LHC during 2012. The data are divided into exclusive categories based on the number of leptons and their flavor, the presence or absence of an opposite-sign, same-flavor lepton pair (OSSF), the invariant mass of the OSSF pair, the presence or absence of a tagged bottom-quark jet, the number of identified hadronically decaying tau leptons, and the magnitude of the missing transverse energy and of the scalar sum of jet transverse momenta. The numbers of observed events are found to be consistent with the expected numbers from standard model processes, and limits are placed on new-physics scenarios that yield multilepton final states. In particular, scenarios that predict Higgs boson production in the context of supersymmetric decay chains are examined. We also place a 95% confidence level upper limit of 1.3% on the branching fraction for the decay of a top quark to a charm quark and a Higgs boson (t to c H), which translates to a bound on the left- and right-handed top-charm flavor-violating Higgs Yukawa couplings, lambda[H, tc] and lambda[H, ct], respectively, of sqrt(abs(lambda[H, tc])^2 + abs(lambda[H, ct])^2) < 0.21.

1 data table match query

Observed - 1sig(theoretical) 95% C.L. exclusion contour for the T1tttt scenario.


Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2018) 113, 2018.
Inspire Record 1682495 DOI 10.17182/hepdata.83912

Measurements of the differential jet cross section are presented as a function of jet mass in dijet events, in bins of jet transverse momentum, with and without a jet grooming algorithm. The data have been recorded by the CMS Collaboration in proton-proton collisions at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 2.3 fb$^{-1}$. The absolute cross sections show slightly different jet transverse momentum spectra in data and Monte Carlo event generators for the settings used. Removing this transverse momentum dependence, the normalized cross section for ungroomed jets is consistent with the prediction from Monte Carlo event generators for masses below 30% of the transverse momentum. The normalized cross section for groomed jets is measured with higher precision than the ungroomed cross section. Semi-analytical calculations of the jet mass beyond leading logarithmic accuracy are compared to data, as well as predictions at leading order and next-to-leading order, which include parton showering and hadronization. Overall, in the normalized cross section, the theoretical predictions agree with the measured cross sections within the uncertainties for masses from 10 to 30% of the jet transverse momentum.

1 data table match query

Absolute cross section for groomed jets for pt = 1100-1200


Study of Drell-Yan dimuon production in proton-lead collisions at $\sqrt{s_\mathrm{NN}} =$ 8.16 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2021) 182, 2021.
Inspire Record 1849180 DOI 10.17182/hepdata.88292

Differential cross sections for the Drell-Yan process, including Z boson production, using the dimuon decay channel are measured in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV. A data sample recorded with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 173 nb$^{-1}$. The differential cross section as a function of the dimuon mass is measured in the range 15-600 GeV, for the first time in proton-nucleus collisions. It is also reported as a function of dimuon rapidity over the mass ranges 15-60 GeV and 60-120 GeV, and ratios for the p-going over the Pb-going beam directions are built. In both mass ranges, the differential cross sections as functions of the dimuon transverse momentum $p_\mathrm{T}$ and of a geometric variable $\phi^*$ are measured, where $\phi^*$ highly correlates with $p_\mathrm{T}$ but is determined with higher precision. In the Z mass region, the rapidity dependence of the data indicate a modification of the distribution of partons within a lead nucleus as compared to the proton case. The data are more precise than predictions based upon current models of parton distributions.

1 data table match query

Correlation matrix for the systematic uncertainties, excluding integrated luminosity, as a function of $p_{\textrm{T}}$ for $15<m_{\mu\mu}<60$ GeV.


Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

2 data tables match query

The differential cross section measurement as a function of the rapidity difference between the two highest pT jets for events with three or more jets.

The differential cross section measurement as a function of the rapidity difference between the two highest pT jets for events with three or more jets.


Measurements of $\mathrm{t\overline{t}}$ differential cross sections in proton-proton collisions at $\sqrt{s} =$ 13 TeV using events containing two leptons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 02 (2019) 149, 2019.
Inspire Record 1703993 DOI 10.17182/hepdata.89307

Measurements of differential top quark pair $\mathrm{t\overline{t}}$ cross sections using events produced in proton-proton collisions at a centre-of-mass energy of 13 TeV containing two oppositely charged leptons are presented. The data were recorded by the CMS experiment at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross sections are presented as functions of kinematic observables of the top quarks and their decay products, the $\mathrm{t\overline{t}}$ system, and the total number of jets in the event. The differential cross sections are defined both with particle-level objects in a fiducial phase space close to that of the detector acceptance and with parton-level top quarks in the full phase space. All results are compared with standard model predictions from Monte Carlo simulations with next-to-leading-order (NLO) accuracy in quantum chromodynamics (QCD) at matrix-element level interfaced to parton-shower simulations. Where possible, parton-level results are compared to calculations with beyond-NLO precision in QCD. Significant disagreement is observed between data and all predictions for several observables. The measurements are used to constrain the top quark chromomagnetic dipole moment in an effective field theory framework at NLO in QCD and to extract $\mathrm{t\overline{t}}$ and leptonic charge asymmetries.

1 data table match query

Covariance matrix of the absolute differential cross section at particle level as a function of $p_{T}^{t}$ (leading).


Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Lett.B 801 (2020) 135114, 2020.
Inspire Record 1745920 DOI 10.17182/hepdata.90606

A search for long-lived particles decaying into an oppositely charged lepton pair, $\mu\mu$, $ee$, or $e\mu$, is presented using 32.8 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s}=13$ TeV by the ATLAS detector at the LHC. Candidate leptons are required to form a vertex, within the inner tracking volume of ATLAS, displaced from the primary $pp$ interaction region. No lepton pairs with an invariant mass greater than 12 GeV are observed, consistent with the background expectations derived from data. The detection efficiencies for generic resonances with lifetimes ($c\tau$) of 100-1000 mm decaying into a dilepton pair with masses between 0.1-1.0 TeV are presented as a function of $p_T$ and decay radius of the resonances to allow the extraction of upper limits on the cross sections for theoretical models. The result is also interpreted in a supersymmetric model in which the lightest neutralino, produced via squark-antisquark production, decays into $\ell^{+}\ell^{'-}\nu$ ($\ell, \ell^{'} = e$, $\mu$) with a finite lifetime due to the presence of R-parity violating couplings. Cross-section limits are presented for specific squark and neutralino masses. For a 700 GeV squark, neutralinos with masses of 50-500 GeV and mean proper lifetimes corresponding to $c\tau$ values between 1 mm to 6 m are excluded. For a 1.6 TeV squark, $c\tau$ values between 3 mm to 1 m are excluded for 1.3 TeV neutralinos.

8 data tables match query

<h1>Overview of reinterpretation material</h1><p><b>Important note:</b> A detailed explanation of the reinterpretation material can be found <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2017-04/hepdata_info.pdf">here</a>.<br/>Please read this stand-alone document before reinterpreting the search.</p><h2>Parameterized detection efficiencies</h2><p>RPV SUSY model: Tables <a href="90606?version=1&table=Table27">27</a> to <a href="90606?version=1&table=Table44">44</a><br/>Z' toy model: Tables <a href="90606?version=1&table=Table45">45</a> to <a href="90606?version=1&table=Table59">59</a></p><h2>Further material for the RPV SUSY model</h2><p>Acceptances: Tables <a href="90606?version=1&table=Table18">18</a> (ee), <a href="90606?version=1&table=Table19">19</a> (emu) and <a href="90606?version=1&table=Table20">20</a> (mumu)<br/>Detection efficiencies: Tables <a href="90606?version=1&table=Table21">21</a> (ee), <a href="90606?version=1&table=Table22">22</a> (emu) and <a href="90606?version=1&table=Table23">23</a> (mumu)<br/>Overall signal efficiencies: Tables <a href="90606?version=1&table=Table24">24</a> (ee), <a href="90606?version=1&table=Table25">25</a> (emu) and <a href="90606?version=1&table=Table26">26</a> (mumu)</p><h2>Further material for the Z' toy model</h2><p>Acceptances, detection efficiencies and overall signal efficiencies: Tables <a href="90606?version=1&table=Table60">60</a> (mZ' = 100 GeV) to <a href="90606?version=1&table=Table64">64</a> (mZ' = 1000 GeV)</p>

Detection efficiency per decay as a function of the mean proper lifetime (ctau) of the neutralino for neutralino -> emunu. The error bars indicate the total uncertainties.

Detection efficiency per decay for Rxy < 22 mm as a function of the invariant mass and pT of the electron pair in LLP -> eeX.

More…