Date

Measurement of J / psi and psi-prime production in 800-GeV/c proton - gold collisions

The E789 collaboration Schub, M.H. ; Jansen, D.M. ; Mishra, C.S. ; et al.
Phys.Rev.D 52 (1995) 1307, 1995.
Inspire Record 394476 DOI 10.17182/hepdata.42428

With a data sample containing 1.1×105 J/ψ→μ+μ− decays reconstructed with 16 MeV/c2 rms mass resolution, we have measured the differential cross sections versus Feynman-x, rapidity, and pT for the production of J/ψ and ψ’ in 800 GeV/c p-Au collisions. Our results are compared with leading-order QCD predictions and with previous measurements. While the shapes of the cross sections are in qualitative agreement with QCD predictions, the magnitudes disagree by factors of 7 (J/ψ) and 25 (ψ’). Assuming an appropriate form for the differential cross sections in regions not measured we derive a total J/ψ production cross section σ(p+N→J/ψ+X)=442±2±88 nb/nucleon and a (model-dependent) total ψ’ cross secton σ(p+N→ψ’+X)=75±5±22 nb/nucleon. For J/ψ produced at central rapidity, dσ(p+N→J/ψ+X)/dy‖y=0=230±5±46 nb/nucleon.

0 data tables match query

Nuclear dependence of neutral D meson production by 800-GeV/c protons

The E789 collaboration Leitch, M.J. ; Boissevain, J. ; Carey, T.A. ; et al.
Phys.Rev.Lett. 72 (1994) 2542-2545, 1994.
Inspire Record 371874 DOI 10.17182/hepdata.19694

The nuclear dependence for 800 GeV/c proton production of neutron D mesons has been measured near xF=0 in Experiment 789 at Fermilab. D mesons from beryllium and gold targets were detected with a pair spectrometer and a silicon vertex detector via their decay D→Kπ. No nuclear dependence is found, with a measured α=1.02±0.03±0.02. The measured differential cross section, dσ/dxF, for neutral-D-meson production at 〈xF〉=0.031 is 58±3±7 μb/nucleon. The integrated cross section obtained by extrapolation of the measured cross section to all xF is 17.7±0.9±3.4 μb/nucleon and is consistent with previous measurements.

8 data tables match query
More…

Search for the decay D0 ---> mu+ mu-

The E789 collaboration Mishra, C.S. ; Brown, C.N. ; Cooper, W.E. ; et al.
Phys.Rev.D 50 (1994) R9-R12, 1994.
Inspire Record 374150 DOI 10.17182/hepdata.42371

Using a silicon-microstrip detector array to identify secondary vertices occurring downstream of a short platinum target, we have searched for the decay D0→μ+μ−. Normalized relative to the J/ψ→μ+μ− signal observed in the same data sample, for a 3.25-mm minimum decay distance our branching-ratio sensitivity is (4.8±1.4)×10−6 per event, and after background subtraction we observe -4.1±4.8 events. Using the statistical approach advocated by the Particle Data Group, we obtain a limit B(D0→μ+μ−)<3.1×10−5 at 90% confidence, confirming with a different technique the limit previously obtained by Louis et al. The interpretation of the upper limit involves complex statistical issues; we present another approach which is more suitable for combining the results of different experiments.

2 data tables match query

Measured branching ratio.

Classical 90 PCT upper limit of branching ratio.


Nuclear dependence of J / psi production by 800-GeV/c protons near x(F) = 0

Leitch, M.J. ; Boissevain, J. ; Brown, C.N. ; et al.
Phys.Rev.D 52 (1995) 4251-4253, 1995.
Inspire Record 394199 DOI 10.17182/hepdata.55727

The nuclear dependence for 800 GeV/c proton production of J/ψ’s has been measured near xF=0. $J/ psi—’s produced from beryllium, carbon, and tungsten targets were detected with the Fermilab E789 pair spectrometer. These data extend the results from E772 down to the range xF=-0.1 to 0.1 and indicate a gradually increasing suppression as xF falls below zero.

0 data tables match query

Measurement of the bottom quark production cross-section in 800-GeV/c proton - gold collisions

Jansen, D.M. ; Schub, M.H. ; Mishra, C.S. ; et al.
Phys.Rev.Lett. 74 (1995) 3118-3121, 1995.
Inspire Record 382417 DOI 10.17182/hepdata.42469

Using a silicon-microstrip detector array to identify secondary vertices, we have observed b→J/ψ→μ+μ− decays in 800GeV/c proton-gold interactions. The doubly differential cross section for J/ψ mesons originating from b-quark decays, assuming linear dependence on nucleon number, is d2σ/dxFdpT2=107±28±19[pb/(GeV/c)2]/nucleon at xF=0.05 and pT=1GeV/c. This measurement is compared to next-to-leading-order QCD predictions. The integrated b-quark production cross section, obtained by extrapolation over all xF and pT, is σ(pN→bb¯+X)=5.7±1.5±1.3 nb/nucleon.

0 data tables match query

Production of J / psi at large x(F) in 800-GeV/c p copper and p beryllium collisions

Kowitt, M.S. ; Gidal, G. ; Ho, P.M. ; et al.
Phys.Rev.Lett. 72 (1994) 1318-1321, 1994.
Inspire Record 361036 DOI 10.17182/hepdata.42472

The differential cross sections dσ/dxF for J/ψ produced inclusively in 800 GeV/c p-Cu and p-Be collisions have been measured in the kinematic range 0.30≤xF≤0.95 through the decay mode J/ψ→μ+μ−. They are compared with the predictions of the semilocal duality model for several sets of parton density functions. No evidence for a suggested intrinsic charm contribution to the cross section is observed. The ratio of the differential cross sections for Cu and Be targets confirms the suppression of J/ψ production in heavy nuclei at large xF.

0 data tables match query

Measurement of $J/\psi$ at forward and backward rapidity in $p+p$, $p+A$l, $p+A$u, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200~{\rm GeV}$

The PHENIX collaboration Acharya, U. ; Adare, A. ; Aidala, C. ; et al.
Phys.Rev.C 102 (2020) 014902, 2020.
Inspire Record 1762446 DOI 10.17182/hepdata.98626

Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.

1 data table match query

J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.


A Measurement of alpha-s from jet rates at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 71 (1993) 2528-2532, 1993.
Inspire Record 356912 DOI 10.17182/hepdata.19724

We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.

1 data table match query

The second systematic error comes from the theoretical uncertainties.


Diffractive Production of $K^0_s K^0_s \pi^+ \pi^- \pi^-$ in $\pi^-N$ Interactions at 200-GeV/c

Chang, C.C. ; Davis, T.C. ; Diamond, R.N. ; et al.
Phys.Rev.D 29 (1984) 1888-1894, 1984.
Inspire Record 194648 DOI 10.17182/hepdata.23730

The diffractive dissociation of a 200-GeV/c π− beam into KS0KS0π+π−π− has been observed. The diffractive KS0KS0π+π−π− cross section is 1.59±0.78 μb. The ratio of the diffractive KS0KS0π+π−π− cross section to the diffractive KS0KS0π− cross section is 0.40±0.13, which is in good agreement with a diffractive-fragmentation-model prediction of 0.36. There is evidence for simultaneous production of K*− and K*+ in the diffractive KS0KS0π+π−π− sample. The K*+−KS0π−+ mass distribution shows an enhancement near 1.95 GeV.

3 data tables match query

No description provided.

No description provided.

No description provided.


Particle dependence of azimuthal anisotropy and nuclear modification of particle production at moderate p(T) in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The STAR collaboration Adams, John ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.Lett. 92 (2004) 052302, 2004.
Inspire Record 620309 DOI 10.17182/hepdata.93260

We present STAR measurements of the azimuthal anisotropy parameter $v_2$ and the binary-collision scaled centrality ratio $R_{CP}$ for kaons and lambdas ($\Lambda+\bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. In combination, the $v_2$ and $R_{CP}$ particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5$ GeV/c as the value where the centrality dependent baryon enhancement ends. The $K_S^0$ and $\Lambda+\bar{\Lambda}$ $v_2$ values are consistent with expectations of constituent-quark-number scaling from models of hadron fromation by parton coalescence or recombination.

0 data tables match query