Understanding nuclear structure provides essential insights into the properties of atomic nuclei. In this paper, details of the nuclear structure of $^{\rm 129}$Xe, such as the quadrupole deformation and the nuclear diffuseness, are studied by extensive measurements of anisotropic-flow-related observables in Xe$-$Xe collisions at a center-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.44$ TeV with the ALICE detector at the LHC. The results are compared with those from Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV for a baseline, given that the $^{\rm 208}$Pb nucleus is not deformed. Furthermore, comprehensive comparisons are performed with a state-of-the-art hybrid model using IP-Glasma+MUSIC+UrQMD. It is found that among various IP-Glasma+MUSIC+UrQMD calculations with different values of nuclear parameters, the one using a nuclear diffuseness parameter of $a_0=0.492$ and a nuclear quadrupole deformation parameter of $\beta_2=0.207$ provides a better description of the presented flow measurements. These studies represent an important step towards a thorough exploration of the imaging power of nuclear collisions at ultrarelativistic energy and the search for the imprint of nuclear structure on various flow observables in heavy-ion collisions at the LHC. The findings demonstrate the potential of nuclear structure studies at the TeV energy scale and highlight that the LHC experiments can complement existing low-energy experiments on nuclear structure studies.
Charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.
Charged particle $v_2\{4\}$ as a function of centrality in Xe$-$Xe and Pb$-$Pb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.44 TeV and $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV, respectively.
Ratio between Xe$-$Xe and Pb$-$Pb charged particle $v_2\{2, \left | \Delta\eta \right | > 1.0\}$ as a function of centrality.
The correlations between event-by-event fluctuations of symmetry planes are measured in Pb--Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV recorded by the ALICE detector at the Large Hadron Collider. This analysis is conducted using the Gaussian Estimator technique, which is insensitive to biases from correlations between different flow amplitudes. The study presents, for the first time, the centrality dependence of correlations involving up to five different symmetry planes. The correlation strength varies depending on the harmonic order of the symmetry plane and the collision centrality. Comparisons with measurements from lower energies indicate no significant differences within uncertainties. Additionally, the results are compared with hydrodynamic model calculations. Although the model predictions provide a qualitative explanation of the experimental results, they overestimate the data for some observables. This is particularly true for correlators that are sensitive to the non-linear response of the medium to initial-state anisotropies in the collision system. As these new correlators provide unique information -- independent of flow amplitudes -- their usage in future model developments can further constrain the properties of the strongly-interacting matter created in ultrarelativistic heavy-ion collisions.
Centrality dependence of $\langle\cos[6(\Psi_3-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of $\langle\cos[4(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Centrality dependence of $\langle\cos[8(\Psi_4-\Psi_2)]\rangle$ in Pb--Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.
Correlations between event-by-event fluctuations of anisotropic flow harmonics are measured in Pb-Pb collisions at a center-of-mass energy per nucleon pair of 5.02 TeV, as recorded by the ALICE detector at the LHC. This study presents correlations up to the hexagonal flow harmonic, $v_6$, which was measured for the first time. The magnitudes of these higher-order correlations are found to vary as a function of collision centrality and harmonic order. These measurements are compared to viscous hydrodynamic model calculations with EKRT initial conditions and to the iEBE-VISHNU model with TRENTo initial conditions. The observed discrepancies between the data and the model calculations vary depending on the harmonic combinations. Due to the sensitivity of model parameters estimated with Bayesian analyses to these higher-order observables, the results presented in this work provide new and independent constraints on the initial conditions and transport properties in theoretical models used to describe the system created in heavy-ion collisions.
NSC(5,2) vs centrality in Pb-Pb collisions at 5.02 TeV
NSC(5,3) vs centrality in Pb-Pb collisions at 5.02 TeV
NSC(6,2) vs centrality in Pb-Pb collisions at 5.02 TeV
On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |$\eta$| < 0.5, we obtain dNch/deta = 3.10 $\pm$ 0.13 (stat.) $\pm$ 0.22 (syst.) for all inelastic interactions, and dNch/deta = 3.51 $\pm$ 0.15 (stat.) $\pm$ 0.25 (syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN SppS collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.
Pseudorapidity dependence of DN/DETARAP in Inelastic (INEL) and Non-Single-Diffractive (NSD) collisions. Note that the plot in the paper shows only statistical errors.
Pseudorapidity density for |ETARAP|<0.5 for Inelastic (INEL) and Non-Single-Diffractive (NSD) collisions.
We report on the measurement of two-pion correlation functions from pp collisions at $\sqrt{s}=900$ GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the HBT radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at RHIC and at Tevatron, is not manifest in our data.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\sqrt{s} = 0.9$ and $7$ TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\rm{t}} < 1.05$ GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \pm 0.006 (stat.) \pm 0.014 (syst.)$ at $0.9$ TeV and $R_{|y| < 0.5} = 0.991 \pm 0.005 (stat.) \pm 0.014 (syst.)$ at $7$ TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.
The PT dependence of the pbar/p ratio for the central rapidity region ABS(YRAP)<0.5.
The central rapidity pbar/p ratio as a function of the rapidity interval Ybeam-Ybaryon and centre-of-mass energy. As well as the present ALICE measurements this table also lists the values from other experiments (see the text of the paper for details).
Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.
Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.
Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.
Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.
The pseudorapidity density and multiplicity distribution of charged particles produced in proton-proton collisions at the LHC, at a centre-of-mass energy $\sqrt{s} = 7$ TeV, were measured in the central pseudorapidity region |$\eta$| < 1. Comparisons are made with previous measurements at $\sqrt{s}$ = 0.9 TeV and 2.36 TeV. At $\sqrt{s}$ = 7 TeV, for events with at least one charged particle in |$\eta$| < 1, we obtain dNch/deta = 6.01 $\pm$ 0.01 (stat.) $^{+0.20}_{-0.12}$ (syst.). This corresponds to an increase of 57.6% $\pm$ 0.4% (stat.) $^{+3.6}_{-1.8}$% (syst.) relative to collisions at 0.9 TeV, significantly higher than calculations from commonly used models. The multiplicity distribution at 7 TeV is described fairly well by the negative binomial distribution.
Charged-particle pseudorapidity densities at central pseudorapidity (ETRAP from -1.0 to 1.0) for the INEL>0 class of events. Data are also given for the lower energy ALICE data.
Relative increase in pseudorapidity density between the different energies.
Multiplicity distribution normalized to the bin width in the pseudorapidity region -1.0 to 1.0 for INEL>0 collisions at a centre-of-mass energy of 7000 GeV. See the paper arXiv:1004.3034 for the lower energy data. Note that the statistical as well as the systematic uncertainties are strongly correlated between neighbouring points. See text of paper for details.
The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at $\sqrt{s} = 900$ GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region $(|\eta|<0.8)$ over the transverse momentum range $0.15<p_{\rm T}<10$ GeV/$c$. The correlation between transverse momentum and particle multiplicity is also studied. Results are presented for inelastic (INEL) and non-single-diffractive (NSD) events. The average transverse momentum for $|\eta|<0.8$ is $\left<p_{\rm T}\right>_{\rm INEL}=0.483\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$ and $\left<p_{\rm T}\right>_{\rm NSD}=0.489\pm0.001$ (stat.) $\pm0.007$ (syst.) GeV/$c$, respectively. The data exhibit a slightly larger $\left<p_{\rm T}\right>$ than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.
Average transverse momentum, including extrapolation to PT=0, for inelastic (INEL) events.
Average transverse momentum, including extrapolation to PT=0, for non-single diffractive (NSD) events.
Power law fit to spectrum for PT > 3 GeV.
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.
Projections of the correlation function C.
Projections of the correlation function C.
Projections of the correlation function C.