Nuclear-Modification Factor for Open-Heavy-Flavor Production at Forward Rapidity in Cu+Cu Collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 86 (2012) 024909, 2012.
Inspire Record 1102910 DOI 10.17182/hepdata.142604

Background: Heavy-flavor production in p+p collisions tests perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p+p results, quantified with the nuclear-modification factor (R_AA), provides information on both cold- and hot-nuclear-matter effects. Purpose: Determine transverse-momentum, pt, spectra and the corresponding R_AA for muons from heavy-flavor mesons decay in p+p and Cu+Cu collisions at sqrt(s_NN)=200 GeV and y=1.65. Method: Results are obtained using the semi-leptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p_T spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte-Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p+p collisions at sqrt{s}=200 GeV, integrated over pt and in the rapidity range 1.4<y<1.9 is found to be dsigma_ccbar/dy = 0.139 +/- 0.029 (stat) ^{+0.051}_{-0.058} (syst) mb. This result is consistent with calculations and with expectations based on the corresponding midrapidity charm-production cross section measured earlier by PHENIX. The R_AA for heavy-flavor muons in Cu+Cu collisions is measured in three centrality intervals for 1<pt<4 GeV/c. Suppression relative to binary-collision scaling (R_AA<1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured heavy-flavor yield in p+p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu+Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.

7 data tables

Production cross section of negative muons from heavy-flavor mesons decay as a function of $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in Cu+Cu collisions for three different centrality intervals (40-94%, 20-40%, and 0-20%), scaled by powers of ten for clarity. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

Invariant production yields of negative muons from heavy-flavor-mesons decay as a function $p_T$ in $p$+$p$ collisions at $\sqrt{s}=200$ GeV. The solid line associated to each set of points corresponds to a fit to the $p$+$p$ invariant yield distribution described in the text, scaled by the appropriate number of binary collisions $N_{coll}$ when comparing to the Cu+Cu measurements.

More…

Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.C 87 (2013) 014902, 2013.
Inspire Record 1107659 DOI 10.17182/hepdata.58994

The anisotropy of the azimuthal distributions of charged particles produced in PbPb collisions with a nucleon-nucleon center-of-mass energy of 2.76 TeV is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee--Yang zeros. The anisotropy is presented as a function of transverse momentum (pt), pseudorapidity (eta) over a broad kinematic range: 0.3 < pt < 20 GeV, abs(eta) < 2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.

92 data tables

Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 0-5%.

Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 5-10%.

Measurements of the elliptic anisotropy parameter using the event-plane method, V2(EP) v PT for the centrality range 10-15%.

More…

Measurement of the cross section for production of b b-bar X, decaying to muons in pp collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 110, 2012.
Inspire Record 1093951 DOI 10.17182/hepdata.58906

A measurement of the inclusive cross section for the process pp to b b-bar X to muon muon X' at sqrt(s) = 7 TeV is presented, based on a data sample corresponding to an integrated luminosity of 27.9 inverse picobarns collected by the CMS experiment at the LHC. By selecting pairs of muons each with pseudorapidity abs(eta)<2.1, the value of the cross section for pp to b b-bar X to muon muon X' is found to be 26.4 +/- 0.1 (stat.) +/- 2.4 (syst.) +/- 1.1 (lumi.) nb is obtained for muons with transverse momentum greater than 4 GeV, and 5.12 +/- 0.03 (stat.) +/- 0.48 (syst.) +/- 0.20 (lumi.) nb for transverse momenta greater than 6 GeV. These results are compared to QCD predictions at leading and next-to-leading orders.

1 data table

The measured integrated cross sections. The second systematic error is due to the luminosity uncertainty.


Deviation from quark-number scaling of the anisotropy parameter v_2 of pions, kaons, and protons in Au+Au collisions at sqrt(s_NN) = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 85 (2012) 064914, 2012.
Inspire Record 1093596 DOI 10.17182/hepdata.141645

Measurements of the anisotropy parameter v_2 of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p_T, and transverse kinetic energy KE_T at midrapidity (|\eta|<0.35) in Au+Au collisions at sqrt(s_NN) = 200 GeV are presented. Pions and protons are identified up to p_T = 6 GeV/c, and kaons up to p_T = 4 GeV/c, by combining information from time-of-flight and aerogel Cherenkov detectors in the PHENIX Experiment. The scaling of v_2 with the number of valence quarks (n_q) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KE_T/n_q in noncentral Au+Au collisions (20--60%), but this scaling remains valid in central collisions (0--10%).

21 data tables

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

Identified hadron $v_2$ in central (0–20% centrality, left panels) Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Panels (a) and (b) show $v_2$ as a function of transverse momentum $p_T$. The $v_2$ of all species for centrality 0–20% has been scaled up by a factor of 1.6 for better comparison with results of 20–60% centrality. The error bars (shaded boxes) represent the statistical (systematic) uncertainties. The systematic uncertainties shown are type A and B only.

More…

Search for quark Compositeness in Dijet Angular Distributions from pp Collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 05 (2012) 055, 2012.
Inspire Record 1090423 DOI 10.17182/hepdata.63901

A search for quark compositeness using dijet angular distributions from pp collisions at sqrt(s) = 7 TeV is presented. The search has been carried out using a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, recorded by the CMS experiment at the LHC. Normalized dijet angular distributions have been measured for dijet invariant masses from 0.4 TeV to above 3 TeV and compared with a variety of contact interaction models, including those which take into account the effects of next-to-leading-order QCD corrections. The data are found to be in agreement with the predictions of perturbative QCD, and lower limits are obtained on the contact interaction scale, ranging from 7.5 up to 14.5 TeV at 95% confidence level.

9 data tables

Normalized dijet angular distributions for |yboost| < 1.11 and Mjj > 3.0 TeV.

Normalized dijet angular distributions for yboost < 1.11 and 2.4 < Mjj < 3.0 TeV.

Normalized dijet angular distributions for yboost < 1.11 and 1.9 < Mjj < 2.4 TeV.

More…

Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 04 (2012) 084, 2012.
Inspire Record 1089835 DOI 10.17182/hepdata.58503

The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

12 data tables

B-jet cross section from the 'jet' analysis.

B-jet cross section from the 'muon' analysis.

B-jet cross section extrapolated from the 'muon' analysis.

More…

Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at sqrt(s) = 7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2012) 036, 2012.
Inspire Record 1087342 DOI 10.17182/hepdata.58967

The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta pt = 35-150 GeV/c in proton-proton collisions at sqrt(s) = 7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2<|eta|<4.7, and central jets within the |eta|<2.8 range. The double differential cross sections with respect to pt and eta are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) PYTHIA and HERWIG parton-shower event generators with different tunes of parameters, and (iii) CASCADE and HEJ models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events.

2 data tables

The measured inclusive forward jet production cross section as a function of the jet transverse momentum.

The measured dijet cross section for jets with one central and one forward jet, as functions of the transverse momentum of each jetRE = P P --> JET JET X.


Cross sections and double-helicity asymmetries of midrapidity inclusive charged hadrons in p+p collisions at sqrt(s)=62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 86 (2012) 092006, 2012.
Inspire Record 1089402 DOI 10.17182/hepdata.142989

Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p+p collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 < p_T < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with recent global parameterizations disfavoring large gluon polarization.

5 data tables

Fit-function parameters for the efficiency curves for different hadron species.

Fit-function parameters for relative fractions of different species in the hadron mix.

Systematic uncertainties of cross-section measurements from various sources.

More…

Study of high-pT charged particle suppression in PbPb compared to pp collisions at sqrt(sNN)=2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Eur.Phys.J.C 72 (2012) 1945, 2012.
Inspire Record 1088823 DOI 10.17182/hepdata.58980

The transverse momentum spectra of charged particles have been measured in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV by the CMS experiment at the LHC. In the transverse momentum range pt = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 5 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher pt, this suppression is significantly reduced, approaching roughly a factor of 2 for particles with pt in the range pt=40-100 GeV/c.

7 data tables

Invariant charged particle differential yields for |eta|<1.0 for P P collisions.

Inclusive scaled charged particle invariant cross section.

Invariant charged particle differential yield in the centrality regions 0 TO 5%, 5 TO 10% and 10 TO 30%.

More…

Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Lett.B 710 (2012) 256-277, 2012.
Inspire Record 1084729 DOI 10.17182/hepdata.58979

Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.

6 data tables

Isolated photon spectra for PB PB collisions in 3 centrality ranges.

Isolated photon spectra for PB PB collisions in the full centrality range.

Isolated photon spectra for P P collisions.

More…