The cross sections of a number of target residues formed in the reactions of 3.65 A GeV 12C ions and 3.65 GeV protons with tantalum have been measured. The measurements have been done by direct counting of irradiated targets with a Ge(Li) gamma-ray spectrometer. Charge dispersions and mass-yield distributions were deduced from these data. The results are discussed in terms of the basic concepts of high-energy nuclear physics. They are also compared with intranuclear cascade and abrasion-ablation model calculations.
No description provided.
No description provided.
SIG IS THE PRODUCTION CROSS SECTION OF TARGET RESIDUES.
Thick-target recoil properties of deep spallation and fragmentation products of the interaction of tantalum with 3.65 AGeV 12C-ions and 3.65 GeV protons have been studied. The kinematic parameters such as mean product kinetic energies and velocities of the remnant have been deduced from the data by means of the two-step vector velocity model of high-energy reactions. The results have also been used to test the applicability of the factorization hypothesis to the kinematic properties.
ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.
ASYM=F/B, WHERE F AND B ARE THE FRACTIONAL NUMBERS OF PRODUCT RECOILING INTO THE FORWARD AND BACKWARD CATCHER, RESPECTIVELY.
Nuclear reactions induced by 3·65 A GeV12C-ions and 3·65 GeV protons on target elements55Mn,59Co,nat Ni andnatCu were investigated by using the foil stack activation technique and Ge(Li) gamma-ray spectroscopy. Charge dispersions and mass-yield distributions of radioactive residues were obtained from the parametrization of measured spallation cross sections. Discussion of results from this and other radiochemical reactions of high-energy protons and12C-ions with complex nuclei is presented in terms of the concepts of limiting fragmentation and factorization.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
None
None
abstract only
No description provided.
No description provided.
No description provided.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.