The ee -> ZZ cross section at sqrt(s)=182.7 and 188.6 GeV has been measured using the ALEPH detector. The analysis covers all of the visible ZZ final states and yields cross section measurements of sigma_ZZ(182.7 GeV) = 0.11 +- (0.16,0.11) (stat.) +- 0.04 (syst.) pb and sigma_ZZ(188.6 GeV) = 0.67 +- 0.13 (stat.) +- 0.04 (syst.) pb consistent with the Standard Model expectations.
The combined cross sections for the 2Z0 (NC2) fixed state.
We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A=-4.92 +- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections.
Polarized beam. FORMFACTOR(NAME=GM_S) is the strange quark contribution. FORMFACTOR(NAME=GM_S) is in nucleon magnetic FF.
We report on measurements of the triple-gauge-boson couplings of the W boson in e+e- collisions with the L3 detector at LEP. W-pair, single-W and single-photon events are analysed in a data sample corresponding to a total luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV and 183 GeV. CP-conserving as well as both C- and P-conserving triple-gauge-boson couplings are determined. The results, in good agreement with the Standard-Model expectations, confirm the existence of the self coupling among the electroweak gauge bosons and constrain its structure.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
The errors are statistical. Two-parameter fit.
We present evidence for the diffractive processes nu_mu Fe -> mu^- D_s^+ (D_s^*+) Fe and nubar_mu Fe -> mu^+ D_s^- (D_s^*-) Fe using the Fermilab SSQT neutrino beam and the Lab E neutrino detector. We observe the neutrino trident reactions nu_mu Fe -> nu_mu mu^- mu^+ Fe and nubar_mu Fe -> nubar_mu mu^+ mu^- Fe at rates consistent with Standard Model expectations. We see no evidence for neutral-current production of J/psi via either diffractive or deep inelastic scattering mechanisms.
The quoted error are completely dominated by statistics. The cross section per nucleon.
The quoted error are completely dominated by statistics. The cross section per nucleon.
The quoted error are completely dominated by statistics. The cross section per nucleon.
The first observation of open b production in ep collisions is reported. An event sample containing muons and jets has been selected which is enriched in semileptonic b quark decays. The visible cross section \sigma(ep -> b \bar{b}X -> \mu X') for Q^2 < 1 GeV^2, 0.1 < y < 0.8 is measured to be 0.176+-0.016(stat.)+0.026-0.017(syst.) nb for the muons to be detected in the range 35 deg < \theta^\mu < 130 deg and \pt^\mu > 2.0 GeV in the laboratory frame. The expected visible cross section based on a NLO QCD calculation is 0.104+-0.017 nb. The cross sections for electroproduction with Q^2<1 GeV^2 and photoproduction are derived from the data and found to be \sigma(ep-> e b\bar{b}X) = 7.1+-0.6(stat.)+1.5-1.3(syst.) nb and \sigma(\gamma p-> b\bar{b} X) = 111+-10(stat.)+23-20(syst.) at an average <W_{\gamma p}> \sim 180 GeV, respectively.
The visible BQ BQBAR --> MUON X cross section in the stated kinematic range.
The total electroproduction and photoproduction cross sections extrapolated to the full phase space.
A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183pb^-1 of data recorded at root{s}=189GeV. From these data, 17 W+W-gamma candidates are selected with photon energy greater than 10GeV, consistent with the Standard Model expectation. These events are used to measure the e+e- to W+W-gamma cross-section within a set of geometric and kinematic cuts; sigma{W+W-gamma} = 136+-37+-8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the {W+ W- gamma gamma} and {W+ W- gamma Z0} vertices: -0.070GeV^{-2} < a_0/Lambda^2 < 0.070GeV^{-2}, -0.13GeV^{-2} < a_c/Lambda^2 < 0.19GeV^{-2}, -0.61GeV^{-2} < a_n/Lambda^2 < 0.57GeV^{-2}, where Lambda represents the energy scale for new physics.
Measured cross section within the kinematic and geometric cuts. THETA(C=GAMMA) is the angle between the photon and the closest jet, and THETA(C=LEPTON) is the angle between the photon and the lepton.
95 PCT confidence limits on possible anomalous contributions.
We have measured the Coulomb dissociation of 8B into 7Be and proton at 254 MeV/nucleon using a large-acceptance focusing spectrometer. The astrophysical S17 factor for the 7Be(p,gamma)8B reaction at E{c.m.} = 0.25-2.78 MeV is deduced yielding S17(0)=20.6 \pm 1.2 (exp.) \pm 1.0 (theo.) eV-b. This result agrees with the presently adopted zero-energy S17 factor obtained in direct-reaction measurements and with the results of other Coulomb-dissociation studies performed at 46.5 and 51.2 MeV/nucleon.
S17(0) = E * SIG * EXP(CONST(C=ZOMMERFELD PARAMETER)). CONST(C=ZOMMERFELD PARAMETER) = 31.29*Z1*Z2*SQRT(M/E), where Z1 and Z2 are the nuclear charges of the interacting particles, M is the reduced mass, E is the center-of-mass energy. P BE7 reaction is extrapolation to inverse kinematics.
The inclusive charm production rate in W decays is measured from a study of the properties of final state particles. The sample of W pairs is selected from 67.7 pb −1 collected by ALEPH in 1996 and 1997 at centre-of-mass energies near 172 and 183 GeV in the channels W + W − →4q and W + W − →ℓνq q ̄ . The branching fraction of hadronic W decays to a final state containing a c quark, R W c = Γ(W→cX)/Γ(W→hadrons), is measured to be 0.51±0.05 stat ±0.03 syst . This allows a direct determination of the CKM matrix element |V cs |=1.00±0.11 stat ±0.07 syst .
VCS is the CKM matrix element.
Single and multi-photon events with missing energy are analysed using data collected with the L3 detector at LEP at a centre-of-mass energy of 189 GeV, for a total of 176 pb^{-1} of integrated luminosity. The cross section of the process e+e- -> nu nu gamma (gamma) is measured and the number of light neutrino flavours is determined to be N_\nu = 3.011 +/- 0.077 including lower energy data. Upper limits on cross sections of supersymmetric processes are set and interpretations in supersymmetric models provide improved limits on the masses of the lightest neutralino and the gravitino. Graviton-photon production in low scale gravity models with extra dimensions is searched for and limits on the energy scale of the model are set exceeding 1 TeV for two extra dimensions.
No description provided.
A precise measurement of the strange quark forward-backward asymmetry used 3.2M multihadronic events around the Z$^0$peak collected by the DELPHI experiment from 1
No description provided.
Parity violating coupling, COUPLING(NAME=A_S) = (2*V_S*A_S)/(V_S**2+A_S**2).