Results on the production of charged hadrons in muon-deuteron and muon-xenon interactions are presented. The data were taken with the E665 spectrometer, which was exposed to the 490 GeV muon beam of the Tevatron at Fermilab. The use of a streamer chamber as vertex detector provides nearly 4π acceptance for charged particles. The μD data are compared with the μXe data in terms of multiplicity distributions, average multiplicities, forward-backward multiplicity correlations, rapidity and transverse momentum distributions and of two-particle rapidity correlations of charged hadrons. The data cover a range of invariant hadronic massesW from 8 to 30 GeV.
Results of negative binomial function fit to the multiplicity distribution of charged hadrons in muon-deuteron scattering. DISPERSION = SQRT(1/MULT + 1/K) is this dispersion of the scaled multiplicity Z = N/MULT.
Results of negative binomial function fit to the multiplicity distribution of charged hadrons in muon-xenon scattering. DISPERSION = SQRT(1/MULT + 1/K) is this dispersion of the scaled multiplicity Z = N/MULT.
Results of negative binomial fits to charged hadron multiplicity distributions in muon-deuteron interactions for backward and forward hemispheres of the hadronic cm.
We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11<M<150 GeV/c2 using dielectron and dimuon data from p¯p collisions at a center-of-mass energy of s=1.8 TeV. Our results show the 1M3 dependence that is expected from the naive Drell-Yan model. In comparison to the predictions of recent QCD calculations we find our data favor those parton distribution functions with the largest quark contributions in the x interval 0.006 to 0.03.
Dielectron differential cross section.
Dimuon differential cross section.
Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.
We present results from the initial run of Fermilab experiment E706. The data include incident π− and p beams at 500 GeV/c on Be and Cu targets, and span the kinematic ranges of transverse momentum and rapidity of 3.5≤pT≤10 GeV/c and −0.7≤yc.m.≤0.7, respectively. We have measured cross sections for π0 and direct-photon production, as well as the ηπ0 production ratio. From the data on Be and Cu, we have extracted the nuclear dependence of π0 production, parametrized as Aα. The cross sections are compared with next-to-leading-log QCD predictions for different choices of the QCD momentum scales and several sets of parton distribution functions.
No description provided.
No description provided.
No description provided.
We have measured antiproton production cross sections as functions of centrality in collisions of 14.6 GeV/c per nucleon Si28 ions with targets of Al, Cu, and Pb. For all targets, the antiproton yields increase linearly with the number of projectile nucleons that have interacted, and show little target dependence. We discuss the implications of this result on the production and absorption of antiprotons within the nuclear medium.
No description provided.
No description provided.
No description provided.
Production of charged kaons in proton-sulphur, proton-gold, sulphur-sulphur and oxygen-gold collisions at 200 GeV/nucleon has been studied in the NA35 Streamer Chamber experiment. Rapidity and transverse mass distributions as well as mean multiplicities were obtained. The results are compared with nucleon-nucleon data and with model predictions.
Tranverse mass distribution for all charged kaons in S S collisions for the limited yrap range 1.4 to 2.4.
Tranverse mass distribution for K0S production in the limited rapidity range 1.4 to 2.4. Data are taken from Bartke et al. ZP C48 (1990) 191.
Rapidity distribution for K+ production in p SU interactions.
Data are presented on inclusiveKs0 and Λ production inK+ and π+ collisions with Al and Au nuclei at 250 GeV/c. Results are given on total inclusive cross sections and theA dependence, as well as on distributions in Feynman-xF, rapidityy and transverse momentum. Ratios ofKS0 and of Λ to π+ production are presented. The data are compared with predictions of the quark-parton model FRITIOF.
No description provided.
No description provided.
No description provided.
Results on the cross section for the production of electron pairs in p p collisions at √ s = 630 GeV are presented. The measured value is σ = 405 ± 51 (syst.) ± 84 (syst.) pb, in the invariant mass interval 10 < m < 70 GeV. The results are compared to recent theoretical calculations which include O( α s 2 ) QCD contributions. The comparison of these data with those of lower energy experiments show approximate scaling as a function of the variable √τ = m √s .
No description provided.
Statistical and systematic errors combined.
Statistical errors only.
The charge asymmetry of leptons from W-boson decay has been measured using p¯p data from the Collider Detector at Fermilab at √s =1.8 TeV. The observed asymmetry is well described by most of the available parton distributions.
Electrons in the central region.
Muons in the central region.
Plug electrons.
We present measurements of the rapidity and transverse-momentum distributions of the protons emitted in S+W, O+W, andp+W reactions at 200 GeV/A around the target rapidity (y=1). The rapidity density rises linearly with the transverse energy for all three systems, but the slope forp+W is much steeper than for O+W and S+W. The rapidity density forp+W is much higher than predicted by summing single nucleonnucleon collisions without any nuclear effects, indicating substantial rescattering of the produced particles. The predictions of the VENUS 3 model, including rescattering, show reasonable agreement with the data for all three systems. We do not have evidence for a strong collective flow of the outgoing particles.
No description provided.
No description provided.
No description provided.
An analysis is presented of the rapidity and transverse momentum distributions and of the nuclear stopping power in collisions ofπ+ andK+ mesons with Al and Au nuclei at 250 GeV/c. The experimental results are compared to predictions of the additive quark model and the dual parton model. The AQM offers an overall consistent description of the data in this experiment. The DPM reproduces reasonably well the rapidity spectra in the central and projectile fragmentation regions, but fails to describe the nuclear stopping power.
No description provided.
Excluding protons of PLAB < 1.2 GeV.
No description provided.