We have measured the multiplicities of particles emitted in collisions between π's and p's of 1.5 to 2.5 GeV/c momentum with He and Ne nuclei in a streamer chamber. The chamber gas served as the target as well as the detecting medium. Because of the low density and 4π solid angle of the detector, it was possible to detect nuclear fragments with energies less than 5 MeV, and to essentially count all the particles emitted in a collision. Event distributions as a function of track multiplicity were obtained as well as correlated event distributions. NUCLEAR REACTIONS He (proton or pion, fragments and pions), Ne (proton or pion, fragments and pions), E=1.5, 2.0, 2.5 BeV/c; streamer chamber gas used as target with fragment energies as low as 5 MeV. Measured multiplicities and correlations of produced particle types.
Experimental results for the cross-sections, the effectivemass distributions, the angular distributions and correlations are presented for the reaction\(\bar p\)p → 3π−3π+. All the multipion mass distributions and the ππ angular correlations are described in terms of a final-state interaction model including theδ00 andδ11 ππ phase shifts, as well as an A2 effect.
Antiproton-proton annihilations into final states containing one or two K10-mesons are studied on the basis of 450 000 pictures from the CERN 2 m HBC. The experiment covers the domain of antiproton incident momentum from 1.50 to 2.04 GeV/c. The resonance production rates are computed for the most abundant channels. The K10K10 threshold effect is explained through the inelastic channel π+π− → K10K10. The decay modes D, E → δ±(975)π∓, δ±(975) → K10K± are pointed out. The strange mesons C and C′ are observed in these annihilations and come mainly from the two-body channels \(p\bar p\) → (C, C′)K and\(p\bar p\) → (C, C′)K*.
We report results from a study of π−p→ω0n at 6.0 GeV/c based on 28 000 events from a charged and neutral spectrometer. Background under the ω0 is only 7%, a large improvement over deuterium-bubble-chamber work. Density matrix elements, projected cross sections, and effective trajectories for natural and unnatural exchanges are presented.
None
None
We present the differential cross sections near u=0 for the reactions π−p→K0Λ and π−p→K*0(890)Λ at incident pion momenta of 8 and 10.7 GeV/c. The differential cross section for the first reaction follows the exponential dependence on u previously observed, while the second shows a dip in the backward direction.
We present the results of an experiment to study the reaction π−p→A2−p, A2−→KS0K− at 22.4 and 23.9 GeV/c. We have 3346 KS0K− events in the effective mass region 1.1 to 1.5 GeV, and covering the |t′| interval 0.0 to 1.0 (GeV/c)2. Because of the low background in this channel, we are able to study various |t′| regions, including the region 0.2 to 0.29 (GeV/c)2 in which the original split A2 peak was observed. We find no substructure in any region. We have also derived differential and total cross sections. The differential cross sections are well fitted by the form dσdt′=At′ebt′ with b≈7.0 (GeV/c)−2. The total cross section is in good agreement with the value derived from other experiments that measure the A2−→ρ0π− decay mode.
We present differential and total cross sections for the reactions π−p→K0[Σ(1385)Λ(1405)] and π−p→K0Λ(1520) at incident pion momenta of 8.0, 10.7, and 15.7 GeV/c. Pions from the decay of the forward K0s's were detected in the forward leg of the BNL double-vee spectrometer and the recoil Y* 's were identified by the missing-mass technique.
We studied K+p interactions at 100 GeV with the Fermi National Accelerator Laboratory 30-in. hydrogen bubble chamber and associated spark-chamber system. We find σtot(K+p)=18.7±1.8 mb and σel(K+p)=2.0±0.4 mb. We present the charged-multiplicity distribution and its moments, and the charge-transfer distribution. The average inelastic charged multiplicity is 〈nc〉=6.65±0.31 and the two-charged-particle correlation functions are f2cc=4.52±1.32 and f2−−=0.47±0.35.