Cross-sections and leptonic forward-backward asymmetries from the Z0 running of LEP.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 16 (2000) 371-405, 2000.
Inspire Record 527605 DOI 10.17182/hepdata.49969

During 1993 and 1995 LEP was run at 3 energies near the Z$^0$peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP o

14 data tables

Hadronic cross section measured with the 1993 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.29 PCT (absolute luminosity).

Hadronic cross section measured with the 1994 data. Additional systematic error of 0.11 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).

Hadronic cross section measured with the 1995 data. Additional systematic error of 0.10 PCT (efficiencies and backgrounds) and 0.11 PCT (absolute luminosity).

More…

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

4 data tables

The measured differential cross section for SIGMA- production.

The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.

The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.

More…

Measurement of the e+ e- --> gamma gamma (gamma) cross section at the LEP energies.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 433 (1998) 429-440, 1998.
Inspire Record 472952 DOI 10.17182/hepdata.49434

The total and the differential cross-sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP at centre-of-mass energies from 130 to 183 GeV for an integrated luminosity of 78.19 pb −1 . The results agree with the QED predictions. The lower limits (obtained including previously published results at the Z 0 energies) on the QED cutoff parameters are Λ + >253 GeV and Λ − >225 GeV and the lower bound on the mass of an excited electron with an effective coupling constant λ γ =1 is 231 GeV/ c 2 . All the limits are at the 95% confidence level.

5 data tables

The cross section of the previously published data (sqrt(s)=91.25 GeV, see PL 327B, 386) is given at the mean of the CM energies weighted by the luminosityat each point.

Statistical errors only. Additional overall systematic uncertainty is givenabove.

Statistical errors only. Additional overall systematic uncertainty is givenabove.

More…

Measurement of the quark and gluon fragmentation functions in Z0 hadronic decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Eur.Phys.J.C 6 (1999) 19-33, 1999.
Inspire Record 448370 DOI 10.17182/hepdata.47405

The transverse, longitudinal and asymmetric components of the fragmentation function are measured from the inclusive charged particles produced in$e^+e^-$collisi

9 data tables

Transverse component of the differential cross section.

Longitudinal component of the differential cross section.

Asymmetric component of the differential cross section.

More…

Measurement of event shape and inclusive distributions at s**(1/2) = 130-GeV and 136-GeV.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 73 (1997) 229-242, 1997.
Inspire Record 424629 DOI 10.17182/hepdata.47715

Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine αs from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: $$←pha _s(133 {⤪ GeV})={0.116}pm {0.007}_{exp-0.004theo}^{+0.005}$$ from the high energy data.

26 data tables

mean values for event shape variables.

Integral of event shape distribution over the specified interval.

Integral of event shape distribution over the specified interval.

More…

First measurement of f2-prime (1525) production in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 379 (1996) 309-318, 1996.
Inspire Record 416741 DOI 10.17182/hepdata.47972

The inclusive production of the f ′ 2 (1525) in hadronic Z 0 decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f ′ 2 (1525) → K + K − . The average number of f ′ 2 (1525) produced per hadronic Z decay, 〈f′ 2 〉 = 0.020 ± 0.005 (stat) ± 0.006 (syst), and the momentum distribution of the f ′ 2 (1525) have both been measured. The mass and width of the f ′ 2 (1525) are found to be 〈M f′ 2 〉 = 1535 ± 5 (stat) ± 4 (syst) MeV/c 2 , (T f′ 2 ;) = 60 ± 20 (stat) ± 19 (syst) MeV/c 2

2 data tables

SIG in (1/SIG) is the total hadronic cross section.

No description provided.


Search for new phenomena using single photon events in the DELPHI detector at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 74 (1997) 577-586, 1997.
Inspire Record 415746 DOI 10.17182/hepdata.41128

Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).

3 data tables

No description provided.

Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.

Here UNSPEC is invisible particle.


Production of SIGMA0 and OMEGA- in Z decays

The DELPHI collaboration Adam, W. ; Adye, T. ; Agasi, E. ; et al.
Z.Phys.C 70 (1996) 371-382, 1996.
Inspire Record 416098 DOI 10.17182/hepdata.47799

None

3 data tables

Statistical error only.

No description provided.

No description provided.


Measurement of inclusive pi0 production in hadronic Z0 decays

The DELPHI collaboration Adam, W. ; Adye, T. ; Agasi, E. ; et al.
Z.Phys.C 69 (1996) 561-574, 1996.
Inspire Record 401100 DOI 10.17182/hepdata.48063

An analysis is presented of inclusive π0 production in Z0 decays measured with the DELPHI detector. At low energies, π0 decays are reconstructed by using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to $x_p={2cdot p≪/{sqrt s}=0.75}$) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for qq̅ and bb̅ events. The number of π0’s per hadronic Z0 event is $N(≪^0)/Z_{had} ^0=9.2pm 0.2({⤪ stat})pm 1.0 ({⤪ syst})$ and for bb̅ events the number of π0’s is ${⤪ N}(≪^0)/{⤪ b⋏r b}=10.1pm 0.4({⤪ stat})pm 1.1 ({⤪ syst})$. The ratio of the number of π0’s in bb̅ events to hadronic Z0 events is less affected by the systematic errors and is found to be 1.09 ±0.05 ±0.01. The measured π0 cross sections are compared with the predictions of different parton shower models. For hadronic events, the peak position in the $xi_{⤪ p}={⤪ ln}(1/{⤪ x_p})$ distribution is $xi_p^{⋆ar}=3.90_{-0.14}^{+0.24}.$ The average number of π0’s from the decay of primary B hadrons is found to be N(B → π0X)/B hadron = 2.78 ± 0.15(stat) ± 0.60(syst).

4 data tables

Differential cross section for all events.

Mean PI0 multiplicity extrapolated below 0.011 with JETSET 7.3.

Differential cross section for the enriched (b bbar) data set.

More…

Measurement of Delta++ (1232) production in hadronic Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 361 (1995) 207-220, 1995.
Inspire Record 399737 DOI 10.17182/hepdata.48095

A measurement of the Δ ++ (1232) inclusive production in hadronic decays of the Z at LEP is presented, based on 1.3 million hadronic events collected by the DELPHI detector in the 1994 LEP running period. The DELPHI ring imaging Cherenkov counters are used for identifying hadrons. The average Δ ++ (1232) multiplicity per hadronic event is 0.079 ± 0.015 which is more than a factor of two below the JETSET, HERWIG and UCLA model predictions. It agrees with a recently proposed universal mass dependence of particle production rates in e + e − annihilations.

2 data tables

Differential DELTA(1232)++ cross section. Errors are combined statistics and systematics.

Mean multiplicities. Extrapolation to full x range using a combination of JETSET, HERWIG and UCLA models. The second systematic error comes from the uncertainty in the extrapolation.