We establish the existence of the top quark using a 67 pb^-1 data sample of Pbar-P collisions at Sqrt(s) = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with t-tbar decay to WW b-bbar, but inconsistent with the background prediction by 4.8 sigma. Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be 176 +/-8(stat) +/- 10(sys.) GeV/c^2, and the t-tbar production cross section to be 6.8 +3.6 -2.4 pb.
We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential, (d2σdPtdy)y=0, and integrated cross sections in pp¯ collisions at s=1.8 TeV using a sample of 16.6 ± 0.6 pb−1 collected by the Collider Detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. Comparison is made to a leading order QCD prediction.
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
The W+jet angular distribution is measured using W→eν events recorded with the Collider Detector at Fermilab (CDF) during the 1988-89 and 1992-93 Tevatron runs. The data agree well with both a leading order and a next-to-leading order theoretical prediction. The shape of the angular distribution is similar to that observed in photon + jet data and significantly different from that observed in dijet data.
We have used 19 pb**-1 of data collected with the Collider Detector at Fermilab to search for new particles decaying to dijets. We exclude at 95% confidence level models containing the following new particles: axigluons with mass between 200 and 870 GeV, excited quarks with mass between 80 and 570 GeV, and color octet technirhos with mass between 320 and 480 GeV.
We report on a study of W+ photon production in approximately 20 pb−1 of p−p¯ collisions at s=1.8 TeV recorded with the Collider Detector at Fermilab. Our results are in good agreement with standard model expectations and are used to obtain limits on anomalous CP-conserving WWγ couplings of −2.3<Δκ<2.2 for λ=0 and −0.7<λ<0.7 for Δκ=0 at 95% C.L. We obtain the same limits for CP-violating couplings. These results provide limits on the higher-order electromagnetic moments of the W boson of 0.8
The charge asymmetry has been measured using $19,039W$ decays recorded by the CDF detector during the 1992-93 run of the Tevatron Collider. The asymmetry is sensitive to the ratio of $d$ and $u$ quark distributions to $x<0.01$ at $Q~2 \approx M_W~2$, where nonperturbative effects are minimal. It is found that of the two current sets of parton distributions, those of Martin, Roberts and Stirling (MRS) are favored over the sets most recently produced by the CTEQ collaboration. The $W$ asymmetry data provide a stronger constraints on $d/u$ ratio than the recent measurements of $F_2~{\mu n}/F_2~{\mu p}$ which are limited by uncertainties originating from deutron corrections.
We present the first measurement of the jet pseudorapidity distribution in direct photon events from a sample of pp¯ collisions at s=1.8TeV, recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from hard quark-gluon Compton scattering, qg→qγ, with the final state quark producing the jet of hadrons. The jet pseudorapidity distribution in this model is sensitive to parton momentum fractions between 0.015 and 0.15. We find that the shape of the measured pseudorapidity distribution agrees well with next-to-leading order QCD calculations.
We present the first measurement of associated direct photon + muon production in hadronic collisions, from a sample of 1.8 TeV $p \bar p$ collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from the Compton scattering process $cg \to c\gamma$, with the final state charm quark producing a muon. Hence this measurement is sensitive to the charm quark content of the proton. The measured cross section of $29\pm 9 pb^{-1}$ is compared to a leading-order QCD parton shower model as well as a next-to-leading-order QCD calculation.
A prompt photon cross section measurement from the Collider Detector at Fermilab experiment is presented. Detector and trigger upgrades, as well as 6 times the integrated luminosity compared with our previous publication, have contributed to a much more precise measurement and extended PT range. As before, QCD calculations agree qualitatively with the measured cross section, but the data has a steeper slope than the calculations.