Date

Pion proton integral cross sections at T(pi) = 40-MeV to 284-MeV.

Kriss, B.J. ; Hoibraten, S. ; Holcomb, M.D. ; et al.
Phys.Rev.C 59 (1999) 1480-1487, 1999.
Inspire Record 500165 DOI 10.17182/hepdata.25638

Integral cross sections for the scattering of pions by protons into angles greater than 30° (lab) have been measured at a wide range of energies spanning the delta resonance using liquid hydrogen targets. Cross sections were measured for π+p scattering at 40 energies from 39.8 to 283.9 MeV and for π−p at 15 energies from 80.0 to 283.9 MeV. Comparisons with phase shift predictions from the Karlsruhe group show good agreement on resonance but significant deviations below 100 MeV.

2 data tables match query

The uncertainties shown include statistical and systematic contributions.

The uncertainties shown include statistical and systematic contributions.


Forward angle pi+- p elastic scattering differential cross-sections at T(pi) = 87-MeV to 139-MeV

Brack, J.T. ; Amaudruz, P.A. ; Ottewell, D.F. ; et al.
Phys.Rev.C 51 (1995) 929-936, 1995.
Inspire Record 400646 DOI 10.17182/hepdata.25894

Absolute π±p elastic scattering differential cross sections have been measured at five incident pion energies between 87 and 139 MeV. An active target of scintillator material (CH1.1) was used to detect recoil protons in coincidence with scattered pions. Pions were detected at forward angles between 27 and 98°c.m. where the low-energy recoil protons stop in the target. The cross sections, typically 5–10% lower than phase shift predictions for π+p and 10–20% lower for the π−p cross sections, are consistent with earlier measurements by this group.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Absolute differential cross-sections and charge asymmetries for pi+- d elastic scattering at 30-MeV, 50-MeV and 65-MeV

Kohler, M.D. ; Ristinen, R.A. ; Kraushaar, J.J. ; et al.
Phys.Rev.C 48 (1993) 1884-1889, 1993.
Inspire Record 365225 DOI 10.17182/hepdata.26004

Absolute π±d differential cross sections and charge asymmetries have been measured at incident pion energies of 30 and 50 MeV, using an active target of scintillator plastic to detect recoil deuterons in coincidence with scattered pions. In addition, a small set of data at 65 MeV was collected for comparision with the results of an earlier experiment performed by this group. Measurements at 50 MeV from the earlier experiment are compared with the results of the present experiment.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Absolute differential cross-sections and charge asymmetries for pi+- d elastic scattering at 65-MeV

Kohler, M.D. ; Brack, J.T. ; Clausen, B. ; et al.
Phys.Rev.C 44 (1991) 15-23, 1991.
Inspire Record 323111 DOI 10.17182/hepdata.26104

Absolute π±d differential cross sections and charge asymmetries have been measured at an incident pion energy of 65 MeV, using an active target of deuterated scintillator plastic to detect recoil deuterons in coincidence with scattered pions. Statistical and systematic uncertainties in the cross sections are each typically ±3%. The charge asymmetry is consistent with theoretical predictions.

1 data table match query

No description provided.


Charged jet evolution and the underlying event in proton - anti-proton collisions at 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 65 (2002) 092002, 2002.
Inspire Record 564673 DOI 10.17182/hepdata.42044

The growth and development of “charged particle jets” produced in proton-antiproton collisions at 1.8 TeV  are studied over a transverse momentum range from 0.5 GeV/c to 50 GeV/c. A variety of leading (highest transverse momentum) charged jet observables are compared with the QCD Monte Carlo models HERWIG, ISAJET, and PYTHIA. The models describe fairly well the multiplicity distribution of charged particles within the leading charged jet, the size of the leading charged jet, the radial distribution of charged particles and transverse momentum around the leading charged jet direction, and the momentum distribution of charged particles within the leading charged jet. The direction of the leading “charged particle jet” in each event is used to define three regions of η−φ space. The “toward” region contains the leading “charged particle jet,” while the “away” region, on the average, contains the away-side jet. The “transverse” region is perpendicular to the plane of the hard 2-to-2 scattering and is very sensitive to the “underlying event” component of the QCD Monte Carlo models. HERWIG, ISAJET, and PYTHIA with their default parameters do not describe correctly all the properties of the “transverse” region.

7 data tables match query

Average number of charged particles as a function of the relative azimuthal angle between the individual charged particle and the overall leading jet angle.

Average scalar PT sum of charged particles as a function of the relative azimuthal angle between the individual charged particle for 3 different lower limits of the leading jet PT. and the overall jet angle.

The average number of toward(DPHI < 60 DEG), transverse (DPHI 60 TO 120 DEG) and away (DPHI > 120 DEG) charged particles as a function of the PT of the leading charged jet. The data in this table are from the Min-Bias events.

More…

Forward - backward charge asymmetry of quark pairs produced at the KEK TRISTAN e+ e- collider

The AMY collaboration Stuart, D. ; Breedon, R.E. ; Chinitz, L.M. ; et al.
Phys.Rev.D 49 (1994) 3098-3105, 1994.
Inspire Record 378569 DOI 10.17182/hepdata.22552

We report on a measurement of the forward-backward charge asymmetry in e+e−→qq¯ at KEK TRISTAN, where the asymmetry is near maximum. We sum over all flavors and measure the asymmetry by determining the charge of the quark jets. In addition we exploit flavor dependencies in the jet charge determination to enhance the contributions of certain flavors. This provides a check on the asymmetries of individual flavors. The measurement agrees with the standard model expectations.

1 data table match query

Forward--backward asymmetry summed over all flavours of quarks.


Measurement of the spin-density matrix elements in exclusive electroproduction of rho0 mesons at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 393-410, 2000.
Inspire Record 505172 DOI 10.17182/hepdata.24209

Exclusive electroproduction of rho^0 mesons has been measured using the ZEUS detector at HERA in two Q^2 ranges, 0.25<Q^2<0.85 GeV^2 and 3<Q^2<30 GeV^2. The low-Q^2 data span the range 20<W<90 GeV; the high-Q^2 data cover the 40<W<120 GeV interval. Both samples extend up to four-momentum transfers of |t|=0.6 GeV^2. The distribution in the azimuthal angle between the positron scattering plane and the rho^0 production plane shows a small but significant violation of s-channel helicity conservation, corresponding to the production of longitudinally polarised (i.e. helicity zero) rho^0 mesons from transverse photons. Measurements of the 15 combinations of spin-density matrix elements which completely define the angular distributions are presented and discussed.

8 data tables match query

The spin-density matrix elements obtained from the BPC low Q**2 data set.

The spin-density matrix elements obtained from the DIS high Q**2 data set.

The spin-density matrix elements obtained from the low Q**2 BPC data set in two W intervals.

More…

Cross-section for forward J / psi production in p anti-p collisions at S = 1.8-TeV

The CDF collaboration Acosta, D. ; Affolder, T. ; Akimoto, H. ; et al.
Phys.Rev.D 66 (2002) 092001, 2002.
Inspire Record 603674 DOI 10.17182/hepdata.22217

The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.

2 data tables match query

The integrated cross section for J/PSI --> MU+ MU- decay.

Cross section as a function of PT. Statistical errors only.


Observation of the $D$, $e$ and Delta Mesons in $\pi^- p$ Interactions at 12-{GeV}/$c$ and 15-{GeV}/$c$

Corden, M.J. ; Dowell, J.D. ; Garvey, J. ; et al.
Nucl.Phys.B 144 (1978) 253-268, 1978.
Inspire Record 131142 DOI 10.17182/hepdata.22222

We have observed the D(1285), E(1420) and δ(975) mesons produced in 12 and 15 GeV/ c π − p interactions at the CERN Omega Spectrometer. Production cross sections and decay branching ratios are presented. Analysis of the decay D(1285) → δ (975) π favours a spin-parity assignment of 1 + .

3 data tables match query

No description provided.

CORRECTED FOR DECAY MODES OTHER THAN <ETA PI+ PI-> AND FOR THE UNOBSERVED PARTS OF THE T-DISTRIBUTION.

No description provided.


Measurements of cross-section and asymmetry for e+ e- ---> b anti-b and heavy quark fragmentation at KEK TRISTAN

The AMY collaboration Liu, F. ; Chinitz, L.M. ; Abe, K. ; et al.
Phys.Rev.D 49 (1994) 4339-4347, 1994.
Inspire Record 381324 DOI 10.17182/hepdata.22547

Using 773 muons found in hadronic events from 142 pb−1 of data at a c.m. energy of 57.8 GeV, we extract the cross section and forward-backward charge asymmetry for the e+e−→bb¯ process, and the heavy quark fragmentation function parameters for the Peterson model. For the analysis of the e+e−→bb¯ process, we use a method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The cross section and asymmetry for e+e−→bb¯ are found to be Rb = 0.57 ± 0.06(stat) ± 0.08(syst) and Ab = −0.59 ± 0.09 ± 0.09, respectively. They are consistent with the standard model predictions. For the study of the fragmentation function we use the variable 〈xE〉, the fraction of the beam energy carried by the heavy hadrons. We obtain 〈xE〉c=0.56−0.05−0.03+0.04+0.03 and 〈xE〉b=0.65−0.04−0.06+0.06+0.05, respectively. These are in good agreement with previously measured values.

4 data tables match query

No description provided.

No description provided.

Here X=E(hadron)/E(beam).

More…