The cross section for the process $e^+e^-\to\pi^+\pi^-$ is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 $e^+e^-$ events, 82000 $\mu^+\mu^-$ events, and 33000 $\pi^+\pi^-$ events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.
The cross section of the process e+e−→π+π−π0 has been measured in the c.m. energy range 984–1060 MeV with the CMD-2 detector at the VEPP-2M collider. The obtained value of Br(ϕ→e+e−)Br(ϕ→π+π−π0)=(4.51±0.16±0.11)×10−5 is in good agreement with the previous measurements and has the best accuracy. Analysis of the Dalitz plot was performed. The contributions of the dominant ϕ→ρπ mechanism as well as of a small direct ϕ→3π amplitude were determined.
We present the results of a search for the charged-lepton-flavor violating decays $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$, where $\ell^{\mp}$ is either an electron or a muon. The results are based on 365 fb$^{-1}$ and 711 fb$^{-1}$ datasets collected with the Belle II and Belle detectors, respectively. We use an exclusive hadronic $B$-tagging technique, and search for a signal decay in the system recoiling against a fully reconstructed $B$ meson. We find no evidence for $B^0 \rightarrow K^{*0}\tau^\pm \ell^{\mp}$ decays and set upper limits on the branching fractions in the range of $(2.9-6.4)\times10^{-5}$ at 90% confidence level.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
A search for nonresonant Higgs boson pair production in the $b\bar{b}b\bar{b}$ final state is presented. The analysis uses 126 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}={13}$ TeV collected with the ATLAS detector at the Large Hadron Collider, and targets both the gluon-gluon fusion and vector-boson fusion production modes. No evidence of the signal is found and the observed (expected) upper limit on the cross-section for nonresonant Higgs boson pair production is determined to be 5.4 (8.1) times the Standard Model predicted cross-section at 95% confidence level. Constraints are placed on modifiers to the $HHH$ and $HHVV$ couplings. The observed (expected) $2\sigma$ constraints on the $HHH$ coupling modifier, $\kappa_\lambda$, are determined to be $[-3.5, 11.3]$ ($[-5.4, 11.4]$), while the corresponding constraints for the $HHVV$ coupling modifier, $\kappa_{2V}$, are $[-0.0, 2.1]$ ($[-0.1, 2.1]$). In addition, constraints on relevant coefficients are derived in the context of the Standard Model effective field theory and Higgs effective field theory, and upper limits on the $HH$ production cross-section are placed in seven Higgs effective field theory benchmark scenarios.
We report the total and differential cross sections for $J/\psi$ photoproduction with the large acceptance GlueX spectrometer for photon beam energies from the threshold at 8.2~GeV up to 11.44~GeV and over the full kinematic range of momentum transfer squared, $t$. Such coverage facilitates the extrapolation of the differential cross sections to the forward ($t = 0$) point beyond the physical region. The forward cross section is used by many theoretical models and plays an important role in understanding $J/\psi$ photoproduction and its relation to the $J/\psi-$proton interaction. These measurements of $J/\psi$ photoproduction near threshold are also crucial inputs to theoretical models that are used to study important aspects of the gluon structure of the proton, such as the gluon Generalized Parton Distribution (GPD) of the proton, the mass radius of the proton, and the trace anomaly contribution to the proton mass. We observe possible structures in the total cross section energy dependence and find evidence for contributions beyond gluon exchange in the differential cross section close to threshold, both of which are consistent with contributions from open-charm intermediate states.
The $L_{\mu}-L_{\tau}$ extension of the standard model predicts the existence of a lepton-flavor-universality-violating $Z^{\prime}$ boson that couples only to the heavier lepton families. We search for such a $Z^\prime$ through its invisible decay in the process $e^+ e^- \to \mu^+ \mu^- Z^{\prime}$. We use a sample of electron-positron collisions at a center-of-mass energy of 10.58GeV collected by the Belle II experiment in 2019-2020, corresponding to an integrated luminosity of 79.7fb$^{-1}$. We find no excess over the expected standard-model background. We set 90$\%$-confidence-level upper limits on the cross section for this process as well as on the coupling of the model, which ranges from $3 \times 10^{-3}$ at low $Z^{\prime}$ masses to 1 at $Z^{\prime}$ masses of 8$GeV/c^{2}$.
We determine the CKM matrix-element magnitude $|V_{cb}|$ using $\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell$ decays reconstructed in $189 \, \mathrm{fb}^{-1}$ of collision data collected by the Belle II experiment, located at the SuperKEKB $e^+e^-$ collider. Partial decay rates are reported as functions of the recoil parameter $w$ and three decay angles separately for electron and muon final states. We obtain $|V_{cb}|$ using the Boyd-Grinstein-Lebed and Caprini-Lellouch-Neubert parametrizations, and find $|V_{cb}|_\mathrm{BGL}=(40.57\pm 0.31 \pm 0.95\pm 0.58)\times 10^{-3}$ and $|V_{cb}|_\mathrm{CLN}=(40.13 \pm 0.27 \pm 0.93\pm 0.58 )\times 10^{-3}$ with the uncertainties denoting statistical components, systematic components, and components from the lattice QCD input, respectively. The branching fraction is measured to be ${\cal B}(\overline{B}^0\to D^{*+}\ell^-\bar\nu_\ell)=(4.922 \pm 0.023 \pm 0.220)\%$. The ratio of branching fractions for electron and muon final states is found to be $0.998 \pm 0.009 \pm 0.020$. In addition, we determine the forward-backward angular asymmetry and the $D^{*+}$ longitudinal polarization fractions. All results are compatible with lepton-flavor universality in the Standard Model.
We measure the complete set of angular coefficients $J_i$ for exclusive $\bar{B} \to D^* \ell \bar{\nu}_\ell$ decays ($\ell = e, \mu$). Our analysis uses the full $711\,\mathrm{fb}^{-1}$ Belle data set with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the $B \to D^*$ transition and the Cabibbo-Kobayashi-Maskawa matrix element $|V_{\rm cb}|$. Using recent lattice QCD calculations for the hadronic form factors, we find $|V_{\rm cb}| = (41.0 \pm 0.7) \times 10^3 $ using the BGL parameterization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter $w$, and investigate the differences of the electron and muon angular distributions. We find no deviation from Standard Model expectations.
Additional spin-0 particles appear in many extensions of the standard model. We search for long-lived spin-0 particles $S$ in $B$-meson decays mediated by a $b\to s$ quark transition in $e^+e^-$ collisions at the $\Upsilon(4S)$ resonance at the Belle II experiment. Based on a sample corresponding to an integrated luminosity of $189 \mathrm{\,fb}^{-1}$, we observe no evidence for signal. We set model-independent upper limits on the product of branching fractions $\mathrm{Br}(B^0\to K^*(892)^0(\to K^+\pi^-)S)\times \mathrm{Br}(S\to x^+x^-)$ and $\mathrm{Br}(B^+\to K^+S)\times \mathrm{Br}(S\to x^+x^-)$, where $x^+x^-$ indicates $e^+e^-, \mu^+\mu^-, \pi^+\pi^-$, or $K^+K^-$, as functions of $S$ mass and lifetime at the level of $10^{-7}$.