Date

A Study of the transverse polarization of Lambda0 and Anti-lambda0 hyperons produced in pi- Cu interactions at 230-GeV/c

The ACCMOR collaboration Barlag, S. ; Becker, H. ; Bożek, A. ; et al.
Phys.Lett.B 325 (1994) 531-535, 1994.
Inspire Record 377671 DOI 10.17182/hepdata.28729

We study the polarization with respect to the normal to the production plane for a very clean sample of 27217 Λ 0 / Λ 0 hyperons produced in 230 GeV/ c π −  Cu interactions. In general we find P(Λ 0 ) ≈ P( Λ 0 ap; 0 except for x F > 0, p T > 1GeV/ c where P ( Λ 0 ) = −0.28±0.09(stat.)±0.02(syst.).

4 data tables

No description provided.

No description provided.

No description provided.

More…

Precision measurement of the neutron magnetic form-factor

Anklin, H. ; Fritschi, D. ; Jourdan, J. ; et al.
Phys.Lett.B 336 (1994) 313-318, 1994.
Inspire Record 384757 DOI 10.17182/hepdata.28730

We present a precise measurement of the neutron magnetic form factor G mn at low momentum transfer ( q = 1.69 fm −1 ). From a simultaneous measurement of D ( e , e ′ n ) and D ( e , e ′ p ) we obtain the ratio of neutron and proton cross sections. The neutron detection efficiency is obtained from a separate measurement using tagged neutrons produced by H ( n , p ) n scattering of a monochromatic neutron beam. In contrast to previous determinations of G mn , the present value is insensitive to the systematic uncertainties in the interpretation of the data in terms of G mn and represents a determination of G mn to ±1.7%.

5 data tables

Using kinematics I.

Using kinematics II.

Using kinematics I. SD is simple dipole model.

More…

Measurements of 525-GeV pion interactions in emulsion

Cherry, M.L. ; Jones, W.V. ; Sengupta, K. ; et al.
Phys.Rev.D 50 (1994) 4272-4282, 1994.
Inspire Record 384760 DOI 10.17182/hepdata.22368

Measurements have been made of inclusive 525 GeV π− interactions in emulsion. The results are compared to proton-emulsion and lower energy pion-emulsion data. Average multiplicities of relativistic shower particles increase with increasing energy, although with a somewhat steeper slope above 60 GeV than at lower energies. The ratio 〈ns〉p/〈ns〉π∼1.1 over the energy range 60–525 GeV. The ratio of the dispersion in the multiplicity distribution to the average multiplicity is the same for proton and pion collisions in emulsion, and is independent of projectile energy. The shape of the shower particle multiplicity distribution does not vary significantly with energy, and KNO scaling appears to hold over the energy range 60–525 GeV. The shower particle pseudorapidity distributions are independent of the beam energy in the target and projectile fragmentation regions, and both the pseudorapidity and multiplicity distributions agree reasonably well with the fritiof model predictions for 525 GeV pions. The dependence of the shower particle multiplicity 〈ns〉 on the number of heavy tracks Nh appraoches saturation as the total shower particle energy becomes a significant fraction of √s , and the pseudorapidity distributions shift toward smaller 〈η〉 with increasing numbers of grey and black tracks at 525 GeV. Neither the average number 〈Nh〉 nor the multiplicity distributions of the heavily ionizing tracks vary significantly with energy, and the normalized angular distributions of grey and black tracks are independent of the type of projectile or projectile energy.

15 data tables

NUCLEUS means average nuclei of BR-2 emulsion.

NUCLEUS means average nuclei of BR-2 emulsion.

NUCLEUS means average nuclei of BR-2 emulsion.

More…

Centrality dependence of longitudinal and transverse baryon distributions in ultrarelativistic nuclear collisions

The E814 collaboration Barrette, J. ; Bellwied, R. ; Braun-Munzinger, P. ; et al.
Phys.Rev.C 50 (1994) 3047-3059, 1994.
Inspire Record 385496 DOI 10.17182/hepdata.25982

Inclusive double differential multiplicities d2N/dy dpt and related quantities have been measured for protons and deuterons produced in 14.6A GeV/c Si+Al and Si+Pb collisions using the E814 forward spectrometer at the AGS at BNL. Collision ‘‘centrality’’ is determined by measuring Nc, the total charged particle multiplicity in the pseudorapidity range 0.85<η<3.8. For both systems Si + Al and Si + Pb, an increase in the proton rapidity distribution dN/dy at midrapidity and a corresponding decrease at higher rapidities are observed with increasing Nc. For Si+Pb, Boltzmann slope parameters TB increase significantly in the most central collisions. The measured distributions exhibit a centrality dependence even when σ/σgeo≲10%, where full overlap between the Si and Pb nuclei occurs in a simple geometric picture. The proton rapidity distribution dN/dy is presented for the symmetric system Si+Al over the entire rapididty interval. The total number of protons, which is the integral of this quantity over rapidity, varies with Nc. Results are compared with various model calculations, mostly using the hadronic cascade codes ARC and RQMD. No significant nuclear transparency is observed, indicating that large baryon and energy densities are produced in these collisions.

1 data table

No description provided.


Composite particle production in relativistic Au + Pt, Si + Pt, and p + Pt collisions

The E886 collaboration Saito, N. ; Bassalleck, B. ; Burger, T. ; et al.
Phys.Rev.C 49 (1994) 3211-3218, 1994.
Inspire Record 383739 DOI 10.17182/hepdata.25998

Recently, highly relativistic Au beams have become available at the Brookhaven National Laboratory, Alternating Gradient Synchrotron. Inclusive production cross sections for composite particles, d, t, He3, and He4, in 11.5A GeV/c Au+Pt collisions have been measured using a beam line spectrometer. For comparison, composite particle production was also measured in Si+Pt and p+Pt collisions at similar beam momenta per nucleon (14.6A GeV/c and 12.9 GeV/c, respectively). The projectile dependence of the production cross section for each composite particle has been fitted to Aprojα. The parameter α can be described by a single function of the mass number and the momentum per nucleon of the produced particle. Additionally, the data are well described by momentum-space coalescence. Comparisons with similar analysis of Bevalac A+A data are made. The coalescence radii extracted from momentum-space coalescence fits are used to determine reaction volumes (‘‘source size’’) within the context of the Sato-Yazaki model.

3 data tables

No description provided.

No description provided.

No description provided.


Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

26 data tables

Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.

Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.

E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).

More…

Production of neutral strange particles in muon - nucleon scattering at 490-GeV

The E665 collaboration Adams, M.R. ; Aderholz, M. ; Aïd, S. ; et al.
Z.Phys.C 61 (1994) 539-550, 1994.
Inspire Record 362429 DOI 10.17182/hepdata.42473

The production ofK0, Λ and\(\bar \Lambda \) particles is studied in the E665 muon-nucleon experiment at Fermilab. The average multiplicities and squared transverse momenta are measured as a function ofxF andW2. Most features of the data can be well described by the Lund model. Within this model, the data on the K0/π± ratios and on the averageK0 multiplicity in the forward region favor a strangeness suppression factors/u in the fragmentation process near 0.20. Clear evidence for QCD effects is seen in the average squared transverse momentum ofK0 and Λ particles.

10 data tables

No description provided.

No description provided.

No description provided.

More…

Production of charmed mesons in Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Z.Phys.C 62 (1994) 1-14, 1994.
Inspire Record 363280 DOI 10.17182/hepdata.48368

The production of charmed mesons$$\mathop {D^0 }\limits^{( - )} $$,D

4 data tables

No description provided.

The DSYS error is due to the error in the branching ratio.

The DSYS error is due to the error in the branching ratio.

More…

Single photon and neutral meson production from WA80

The WA80 collaboration Santo, R. ; Albrecht, R. ; Awes, T.C. ; et al.
Nucl.Phys.A 566 (1994) 61C-68C, 1994.
Inspire Record 36273 DOI 10.17182/hepdata.9268

None

2 data tables

No description provided.

No description provided.


Measurement of kinematic and nuclear dependence of R = sigma-L / sigma-t in deep inelastic electron scattering

Dasu, S. ; deBarbaro, P. ; Bodek, A. ; et al.
Phys.Rev.D 49 (1994) 5641-5670, 1994.
Inspire Record 360765 DOI 10.17182/hepdata.22468

We report results on a precision measurement of the ratio R=σLσT in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q2≤10 (GeV/c)2. Our results show, for the first time, a clear falloff of R with increasing Q2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences RA−RD and the cross section ratio σAσD between Fe and Au nuclei and the deuteron. Our results for RA−RD are consistent with zero for all x, Q2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σAσD from all recent experiments, at all x, Q2 values, are now in agreement.

31 data tables

No description provided.

No description provided.

No description provided.

More…