The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.
Photon beam asymmetry Sigma at W= 1.2711 GeV
Photon beam asymmetry Sigma at W= 1.2858 GeV
Photon beam asymmetry Sigma at W= 1.3003 GeV
The first measurement of incoherent η-photoproduction from the deuteron in the threshold region is reported. The experiment was carried out at the MAMI accelerator with the TAPS spectrometer. Total and differential inclusive cross sections have been obtained between 627 and 790 MeV. It is found that the reaction is completely dominated by the incoherent part. An upper limit for coherent η-photoproduction on the deuteron is deduced, which is substantially lower than the result from an earlier measurement. The incoherent cross section is reproduced in a participant-spectator approach under the assumption of an energy-independent ratio between the neutron and proton cross sections. Best agreement is found for the ratio σ n σ p ≈ 2 3 . The implications for the isospin components of the electromagnetic excitation of the S 11 (1535) resonance are discussed.
The helicity amplitudes A(1/2) = <S11|j(em)|nucleon> are measured.
Differential and total cross sections for the photoproduction of neutral pions from the proton have been measured for incident photon energies from 140–270 MeV, using the photon spectrometer TAPS at the tagged photon beam of the 855 MeV Mainz Microtron. The energy dependence of the s- and p-wave multipoles close to threshold was deduced from a multipole fit and a multipole analysis. The extracted s-wave amplitude E 0+ at threshold is found to be significantly smaller than the prediction of the classical low energy theorems, but is in reasonable agreement with the chiral perturbation theory.
No description provided.
The reaction $\gamma p \to \pi^0 \pi^0 p$ has been measured using the TAPS BaF$_2$ calorimeter at the tagged photon facility of the Mainz Microtron accelerator. Chiral perturbation theory (ChPT) predicts that close to threshold this channel is significantly enhanced compared to double pion final states with charged pions. In contrast to other reaction channels, the lower order tree terms are strongly suppressed in 2$\pi^0$ photoproduction. The consequence is the dominance of pion loops in the 2$\pi^0$ channel close to threshold - a result that opens new prospects for the test of ChPT and in particular its inherent loop terms. The present measurement is the first which is sensitive enough for a conclusive comparison with the ChPT calculation and is in agreement with its prediction. The data also show good agreement with a calculation in the unitary chiral approach.
Total cross section measurement. Statistical errors only.
The photon asymmetry in the reaction p(\vec{\gamma},\pi^{0})p close to threshold has been measured for the first time with the photon spectrometer TAPS using linearly polarized photons from the tagged-photon facility at the Mainz Microtron MAMI. The total and differential cross sections were also measured simultaneously with the photon asymmetry. This allowed determination of the S-wave and all three P-wave amplitudes. The low-energy theorems based on the parameter-free third-order calculations of heavy-baryon chiral perturbation theory for P1 and P2 agree with the experimental values.
Polarized photon beam.
Total and differential cross sections for photoproduction of η mesons from 12 C, 40 Ca, 93 Nb, and nat Pb have been obtained up to 790 MeV incident photon energy at the Mainz Microtron (MAMI) with the TAPS spectrometer. The absorption cross section σ ηN abs = (30 ± 2.5 ± 6)mb of η mesons in nuclear matter and the absorption length λ η = (2.0 ± 0.2 ± 0.4) fm are extracted. No significant depletion of the S 11 (1535) strength in the η photoproduction on nuclei is observed.
THE TOTAL SIG WAS PARAMETRIZED BY A**POWER.
Differential cross sections and beam asymmetries for coherent \pi^\circ photoproduction from ^4He in the \Delta energy-range have been measured with high statistical and systematic precisions using both decay photons for identifying the process.The experiment was performed at the MAinz MIcrotron using the TAPS photon spectrometer and the Glasgow/Mainz tagged photon facility. The differential cross sections are in excellent agreement with predictions based on the DWIA if an appropriate parametrization of the \Delta-nuclear interaction is applied. The beam asymmetries are interpreted in terms of degrees of linear polarization of collimated coherent bremsstrahlung. The expected increase of the degree of linear polarization with decreasing collimation angle is confirmed. Agreement with calculations is obtained on a few-percent level of precision in the maxima of the coherent peaks.
Only statistical errors are presented.
Only statistical errors are presented.
Only statistical errors are presented.
The production ofπ0 andη mesons has been studied in the reactions20Ne +Al at 350 MeV/u and40Ar + Ca at 1.0 GeV/u. Rapidity distributions and transverse momentum spectra have been measured and are compared to thermal distributions.
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
THE SPECTRUM (1/PT)*D(SIG)/D(PT) HAS BEEN FITTED BY A THERMAL DISTRIBUTION SQRT(MT)*EXP(-SLOPE*MT).
Differential cross sections of the reactions $(\gamma,\pi^\circ\pi^\circ)$ and $(\gamma,\pi^\circ\pi^++\pi^\circ\pi^-)$ have been measured for several nuclei ($^1$H,$^{12}$C, and $^{\rm nat}$Pb) at an incident-photon energy of $E_{\gamma}$=400-460 MeV at the tagged-photon facility at MAMI-B using the TAPS spectrometer. A significant nuclear-mass dependence of the $\pi\pi$ invariant-mass distribution is found in the $\pi^\circ\pi^\circ$ channel. This dependence is not observed in the $\pi^\circ\pi^{+/-}$ channel and is consistent with an in-medium modification of the $\pi\pi$ interaction in the $I$=$J$=0 channel. The data are compared to $\pi$-induced measurements and to calculations within a chiral-unitary approach.
Differential cross section for PI0PI0 production with a proton target. Errors are statistical only. Note that the data given in this table are sightly different (newer) than the data points presented in the paper.
Differential cross section for PI0PI0 production with a Carbon target. Errors are statistical only.
Differential cross section for PI0PI0 production with a Lead target. Errors are statistical only.
None
SIG(Q=N) and SIG(Q=P) ratio is extracted from the data of scattering on HE4.