Exclusive and dissociative J/$\psi$ photoproduction, and exclusive dimuon production, in p$-$Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.D 108 (2023) 112004, 2023.
Inspire Record 2654315 DOI 10.17182/hepdata.144875

The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.

6 data tables

Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval

Exclusive J/psi photoproduction cross section in p-Pb UPC.

Dissociative J/psi photoproduction cross section in p-Pb UPC.

More…

Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

The CLEO collaboration Pedlar, T.K. ; Cronin-Hennessy, D. ; Gao, K.Y. ; et al.
Phys.Rev.Lett. 95 (2005) 261803, 2005.
Inspire Record 693873 DOI 10.17182/hepdata.130708

Using 20.7 pb^-1 of e+e- annihilation data taken at sqrt{s} = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q^2| = 13.48 GeV^2 by the reaction e+e- to h+h-. The measurements are the first ever with identified pions and kaons of |Q^2| > 4 GeV^2, with the results F_pi(13.48 GeV^2) = 0.075+-0.008(stat)+-0.005(syst) and F_K(13.48 GeV^2) = 0.063+-0.004(stat)+-0.001(syst). The result for the proton, assuming G^p_E = G^p_M, is G^p_M(13.48 GeV^2) = 0.014+-0.002(stat)+-0.001(syst), which is in agreement with earlier results.

2 data tables

Born cross section of $e^+e^-\rightarrow h^+h^-$

Timelike form factor


Version 4
Measurement of the $\mathrm e^+\mathrm e^-\rightarrow\mathrm\pi^+\mathrm\pi^-$ Cross Section between 600 and 900 MeV Using Initial State Radiation

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Adlarson, P. ; et al.
Phys.Lett.B 753 (2016) 629-638, 2016.
Inspire Record 1385603 DOI 10.17182/hepdata.73898

In Phys. Lett. B 753, 629-638 (2016) [arXiv:1507.08188] the BESIII collaboration published a cross section measurement of the process $e^+e^-\to \pi^+ \pi^-$ in the energy range between 600 and 900 MeV. In this erratum we report a corrected evaluation of the statistical errors in terms of a fully propagated covariance matrix. The correction also yields a reduced statistical uncertainty for the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, which now reads as $a_\mu^{\pi\pi\mathrm{, LO}}(600 - 900\,\mathrm{MeV}) = (368.2 \pm 1.5_{\rm stat} \pm 3.3_{\rm syst})\times 10^{-10}$. The central values of the cross section measurement and of $a_\mu^{\pi\pi\mathrm{, LO}}$, as well as the systematic uncertainties remain unchanged.

10 data tables

Results of the BESIII measurement of the cross section $\sigma^{\rm bare}_{\pi^+\pi^-(\gamma_{\rm FSR})} \equiv \sigma^{\rm bare}(e^+e^-\rightarrow\pi^+\pi^-(\gamma_{\rm FSR}))$ and the squared pion form factor $|F_\pi|^2$. The errors are statistical only. The value of $\sqrt{s'}$ represents the bin center. The 0.9$\%$ systematic uncertainty is fully correlated between any two bins.

Results for the bare cross section $\sigma^\text{bare}_{\pi^+\pi^-}$ and the pion form factor together with their statistical uncertainties. The systematical uncertainties are given by 0.9% (see <a href="https://inspirehep.net/literature/1385603">arXiv:1507.08188</a>).

Bare cross section $\sigma^\mathrm{bare}(e^+e^-\to\pi^+\pi^-(\gamma_\mathrm{FSR}))$ of the process $e^+e^-\to\pi^+\pi^-$ measured using the initial state radiation method. The data is corrected concerning final state radiation and vacuum polarization effects. The final state radiation is added using the Schwinger term at born level.

More…

Version 2
Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p--Pb Collisions at sqrt(s_NN) = 5.02 TeV

The ALICE collaboration Abelev, Betty Bezverkhny ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 728 (2014) 25-38, 2014.
Inspire Record 1244523 DOI 10.17182/hepdata.61786

In this Letter, comprehensive results on ${\rm\pi}^\pm$, K$^\pm$, K$^0_S$, p, $\rm\bar{p}$, $\rm \Lambda$ and $\rm \bar{\Lambda}$ production at mid-rapidity ($0 < y_{\rm cms} < 0.5$) in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, measured by the ALICE detector at the LHC, are reported. The transverse momentum distributions exhibit a hardening as a function of event multiplicity, which is stronger for heavier particles. This behavior is similar to what has been observed in pp and Pb-Pb collisions at the LHC. The measured $p_{\rm T}$ distributions are compared to results at lower energy and with predictions based on QCD-inspired and hydrodynamic models.

49 data tables

pT-differential invariant yield of charged pions in pPb collisions with centre-of-mass energy/nucleon=5.02 TeV.

pT-differential invariant yield of charged pions in pPb collisions with centre-of-mass energy/nucleon=5.02 TeV.

pT-differential invariant yield of charged pions in pPb collisions with centre-of-mass energy/nucleon=5.02 TeV.

More…

Energy dependence of exclusive $J/\psi$ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Torales - Acosta, Fernando ; Adamova, Dagmar ; et al.
Eur.Phys.J.C 79 (2019) 402, 2019.
Inspire Record 1693305 DOI 10.17182/hepdata.89306

The ALICE Collaboration has measured the energy dependence of exclusive photoproduction of $J/\psi$ vector mesons off proton targets in ultra-peripheral p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV. The e$^+$e$^-$ and $\mu^+\mu^-$ decay channels are used to measure the cross section as a function of the rapidity of the $J/\psi$ in the range $-2.5 < y < 2.7$, corresponding to an energy in the $\gamma$p centre-of-mass in the interval $40 < W_{\gamma\mathrm{p}}<550$ GeV. The measurements, which are consistent with a power law dependence of the exclusive $J/\psi$ photoproduction cross section, are compared to previous results from HERA and the LHC and to several theoretical models. They are found to be compatible with previous measurements.

1 data table

Differential cross sections as a function of rapidity for exclusive J/PSI photoproduction off protons in ultra-peripheral p-Pb collisions. The corresponding J/PSI photoproduction cross sections in bins of the GAMMA-P centre-of-mass, W(GAMMA P), are also presented.


Measurement of $R_{\text{uds}}$ and $R$ between 3.12 and 3.72 GeV at the KEDR detector

Anashin, V.V. ; Aulchenko, V.M. ; Baldin, E.M. ; et al.
Phys.Lett.B 753 (2016) 533-541, 2016.
Inspire Record 1397002 DOI 10.17182/hepdata.76727

Using the KEDR detector at the VEPP-4M $e^+e^-$ collider, we have measured the values of $R_{\text{uds}}$ and $R$ at seven points of the center-of-mass energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or better than $3.3\%$ at most of energy points with a systematic uncertainty of about $2.1\%$. At the moment it is the most accurate measurement of $R(s)$ in this energy range.

1 data table

Measured values of $R_{\rm{uds}}(s)$ and $R(s)$ with statistical and systematic uncertainties.


Measurement of the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section with the CMD-3 detector at the VEPP-2000 collider

Shemyakin, D.N. ; Fedotovich, G.V. ; Akhmetshin, R.R. ; et al.
Phys.Lett.B 756 (2016) 153-160, 2016.
Inspire Record 1395968 DOI 10.17182/hepdata.76553

The process $e^+e^- \to K^+K^-\pi^+\pi^-$ has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider. Using about 24000 selected events, the $e^+e^- \to K^+K^-\pi^+\pi^-$ cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of $K^+K^-\pi^+\pi^-$ production dynamics has been performed.

1 data table

Center-of-mass energy, integrated luminosity, number of four-track events, number of three-track events, detection efficiency, radiative correction and Born cross section of the process $e^{+}e^{-} \to K^{+} K^{-} \pi^{+} \pi^{-}$. Errors are statistical only.


Energy scan of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections and evidence for the $\Upsilon(11020)$ decays into charged bottomonium-like states

The Belle collaboration Abdesselam, A. ; Adachi, I. ; Adamczyk, K. ; et al.
Phys.Rev.Lett. 117 (2016) 142001, 2016.
Inspire Record 1389855 DOI 10.17182/hepdata.74710

Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.

1 data table

Center-of-mass energies, integrated luminosities and Born cross sections for all energy points. The first uncertainty in the energy is uncorrelated, the second is correlated. The three uncertainties in the cross sections are statistical, uncorrelated systematic and correlated systematic.


Femtoscopy of pp collisions at sqrt{s}=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

The ALICE collaboration Aamodt, K. ; Abrahantes Quintana, A. ; Adamova, D. ; et al.
Phys.Rev.D 84 (2011) 112004, 2011.
Inspire Record 884741 DOI 10.17182/hepdata.74220

We report on the high statistics two-pion correlation functions from pp collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}$=7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions, and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant non-femtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low $p_{\rm T}$. They are well reproduced by the Monte-Carlo generators and seen also in $\pi^+\pi^-$ correlations.

14 data tables

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

Parameters of the three-dimensional Gaussian fits to the complete set of the correlation functions in 8 ranges in multiplicity and 6 in $k_{\rm T}$ for pp collisions at $\sqrt{s}$=7 TeV and 4 ranges in multiplicity and 6 in kT for pp collisions at $\sqrt{s}$=0.9 TeV.

More…

Study of the process $e^+e^-\to p\bar{p}$ in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

The CMD-3 collaboration Akhmetshin, R.R. ; Amirkhanov, A.N. ; Anisenkov, A.V. ; et al.
Phys.Lett.B 759 (2016) 634-640, 2016.
Inspire Record 1385598 DOI 10.17182/hepdata.73805

Using a data sample of 6.8 pb$^{-1}$ collected with the CMD-3 detector at the VEPP-2000 $e^+e^-$ collider we select about 2700 events of the $e^+e^- \to p\bar{p}$ process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio $|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30$.

2 data tables

The c.m. energy, beam energy shift, luminosity, number of selected $e^+e^- \to p\bar{p}$ events, detection efficiency, radiative correction, and cross section with statistical and systematic errors. The data for collinear type events.

The c.m. energy, luminosity, number of signal events, fraction of antiprotons stopped in beam pipe and DC inner shell, efficiency, cross section with statistical and systematic errors, for annihilation events.