Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 846 (2023) 137782, 2023.
Inspire Record 2165935 DOI 10.17182/hepdata.138430

The study of the azimuthal anisotropy of inclusive muons produced in p-Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV, using the ALICE detector at the LHC is reported. The measurement of the second-order Fourier coefficient of the particle azimuthal distribution, $v_2$, is performed as a function of transverse momentum $p_{\rm T}$ in the 0-20% high-multiplicity interval at both forward ($2.03 < y_{\rm CMS} < 3.53$) and backward ($-4.46 < y_{\rm CMS} < -2.96$) rapidities over a wide $p_{\rm T}$ range, $0.5 < p_{\rm T} < 10$ GeV/$c$, in which a dominant contribution of muons from heavy-flavour hadron decays is expected at $p_{\rm T} > 2$ GeV/$c$. The $v_2$ coefficient of inclusive muons is extracted using two different techniques, namely two-particle cumulants, used for the first time for heavy-flavour measurements, and forward-central two-particle correlations. Both techniques give compatible results. A positive $v_2$ is measured at both forward and backward rapidities with a significance larger than $4.7\sigma$ and $7.6\sigma$, respectively, in the interval $2 < p_{\rm T} < 6$ GeV/$c$. Comparisons with previous measurements in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, and with AMPT and CGC-based theoretical calculations are discussed. The findings impose new constraints on the theoretical interpretations of the origin of the collective behaviour in small collision systems.

0 data tables match query

Search for quasi-particle scattering in the quark-gluon plasma with jet splittings in pp and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.Lett. 135 (2025) 031901, 2025.
Inspire Record 2831271 DOI 10.17182/hepdata.158541

The ALICE Collaboration reports measurements of the large relative transverse momentum ($k_{\text{T}}$) component of jet substructure in pp and Pb$-$Pb collisions at center-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}}=5.02$ TeV. Enhancement in the yield of such large-$k_{\text{T}}$ emissions in head-on Pb$-$Pb collisions is predicted to arise from partonic scattering with quasi-particles of the quark-gluon plasma. The analysis utilizes charged-particle jets reconstructed by the anti-$k_{\text{T}}$ algorithm with resolution parameter $R=0.2$ in the transverse-momentum interval $60 < p_{\text{T,ch jet}} < 80$ GeV/$c$. The soft drop and dynamical grooming algorithms are used to identify high transverse momentum splittings in the jet shower. Comparison of measurements in Pb$-$Pb and pp collisions shows medium-induced narrowing, corresponding to yield suppression of high-$k_{\text{T}}$ splittings, in contrast to the expectation of yield enhancement due to quasi-particle scattering. The measurements are compared to theoretical model calculations incorporating jet modification due to jet-medium interactions ("jet quenching"), both with and without quasi-particle scattering effects. These measurements provide new insight into the underlying mechanisms and theoretical modeling of jet quenching.

0 data tables match query

Measurement of the inclusive isolated-photon production cross section in pp and Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Eur.Phys.J.C 85 (2025) 553, 2025.
Inspire Record 2831272 DOI 10.17182/hepdata.157542

The ALICE Collaboration at the CERN LHC has measured the inclusive production cross section of isolated photons at midrapidity as a function of the photon transverse momentum ($p_{\rm T}^{\gamma}$), in Pb$-$Pb collisions in different centrality intervals, and in pp collisions, at centre-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=5.02$ TeV. The photon transverse momentum range is between 10-14 and 40-140 GeV/$c$, depending on the collision system and on the Pb$-$Pb centrality class. The result extends to lower $p_{\rm T}^{\gamma}$ than previously published results by the ATLAS and CMS experiments at the same collision energy. The covered pseudorapidity range is $|\eta^{\gamma}| <0.67$. The isolation selection is based on a charged particle isolation momentum threshold $p_{\rm T}^{\rm iso,~ch} = 1.5$ GeV/$c$ within a cone of radii $R=0.2$ and $0.4$. The nuclear modification factor is calculated and found to be consistent with unity in all centrality classes, and also consistent with the HG-PYTHIA model, which describes the event selection and geometry biases that affect the centrality determination in peripheral Pb$-$Pb collisions. The measurement is compared to next-to-leading order perturbative QCD calculations and to the measurements of isolated photons and Z$^0$ bosons from the CMS experiment, which are all found to be in agreement.

0 data tables match query

Multimuons in cosmic-ray events as seen in ALICE at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JCAP 04 (2025) 009, 2025.
Inspire Record 2842099 DOI 10.17182/hepdata.158063

ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ}<\theta<50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3d. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15}<E_\mathrm{prim}< 6 \times 10^{16}$~eV. In this interval none of the three models is able to describe precisely the trend of the composition of cosmic rays as the energy increases. However, QGSJET-II-04 is found to be the only model capable of reproducing reasonably well the muon multiplicity distribution, assuming a heavy composition of the primary cosmic rays over the whole energy range, while SIBYLL 2.3d and EPOS-LHC underpredict the number of muons in a large interval of multiplicity by more than $20\%$ and $30\%$, respectively. The rate of high muon multiplicity events ($N_\mu>100$) obtained with QGSJET-II-04 and SIBYLL 2.3d is compatible with the data, while EPOS-LHC produces a significantly lower rate ($55\%$ of the measured rate). For both QGSJET-II-04 and SIBYLL 2.3d, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy $E_\mathrm{prim} \sim 10^{17}$ eV of these events. This result places significant constraints on more exotic production mechanisms.

0 data tables match query

First measurement of $\mathrm{D_{s1}}(1^{+})(2536)^+$ and $\mathrm{D_{s2}^{*}(2^{+})(2573)^+}$ production in proton--proton collisions at $\sqrt{s} = 13$ TeV at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.D 111 (2025) 112005, 2025.
Inspire Record 2829721 DOI 10.17182/hepdata.158279

The production yields of the orbitally excited charm-strange mesons $\mathrm{D_{s1}(1^{+})(2536)^+}$ and $\mathrm{D_{s2}^{*}(2^{+})(2573)^+}$were measured for the first time in proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV with the ALICE experiment at the LHC. The $\mathrm{D_{s1}^+}$ and $\mathrm{D_{s2}^{*+}}$ mesons were measured at midrapidity ($|y|<0.5$) in minimum-bias and high-multiplicity pp collisions in the transverse-momentum interval $2<p_{\rm T}<24$ GeV/$c$. Their production yields relative to the $\mathrm{D_{s}^{+}}$ ground-state yield were found to be compatible between minimum-bias and high-multiplicity collisions, as well as with previous measurements in ${\rm e}^{\pm}$p and ${\rm e^+ e^-}$ collisions. The measured $\mathrm{D_{s1}^+/D_{s}^{+}}$ and $\mathrm{D_{s2}^{*+}/D_{s}^{+}}$ yield ratios are described by statistical hadronization models and can be used to tune the parameters governing the production of excited charm-strange hadrons in Monte Carlo generators, such as PYTHIA 8.

0 data tables match query

J/$\psi$-hadron correlations at midrapidity in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 07 (2025) 023, 2025.
Inspire Record 2825965 DOI 10.17182/hepdata.158645

We report on the measurement of inclusive, non-prompt, and prompt J/$ψ$-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of $13~\text{TeV}$. The correlations are studied at midrapidity ($|y| < 0.9$) in the transverse momentum ranges $p_{\rm T} < 40~\text{GeV}/c$ for the J/$ψ$ and $0.15 < p_{\rm T} < 10~\text{GeV}/c$ and $|η|<0.9$ for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of $L_{\text{int}} = 34~\text{nb}^{-1}$ and $L_{\text{int}} = 6.9~\text{pb}^{-1}$, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of $E = 4$ and $9~\text{GeV}$ in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of $L_{\text{int}} = 0.9~\text{pb}^{-1}$ and $L_{\text{int}} = 8.4~\text{pb}^{-1}$, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/$ψ$ trigger are presented as a function of the J/$ψ$ and associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations.

0 data tables match query

Coherent J/$\psi$ photoproduction at midrapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Lett.B 871 (2025) 139952, 2025.
Inspire Record 2829848 DOI 10.17182/hepdata.166012

The coherent J/$\psi$ photoproduction cross section is measured for the first time at midrapidity in peripheral to semicentral Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. The centrality differential cross section ${\rm d} \sigma/ {\rm d}y$ is reported for the centrality range 40-90%, together with the doubly-differential cross section ${\rm d}^2 \sigma /{\rm d}y {\rm d} p_{\rm T}$, extracted in two peripheral centrality classes. The J/$\psi$ mesons are reconstructed in the dielectron channel, in the rapidity interval $|y| <$ 0.9 using the ALICE central barrel detectors. The J/$\psi$ cross section at midrapidity is statistically compatible to the earlier ALICE measurement at forward rapidity and at the same centre-of-mass energy, and shows only a mild centrality dependence over the covered range. Several sets of theoretical calculations taking into account the hadronic overlap in the collisions but ignoring possible final-state effects from a hot expanding medium are found to give a fairly good description of the current measurements within uncertainties.

0 data tables match query

Measurement of beauty production via non-prompt charm hadrons in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Agarwal, Apar ; et al.
CERN-EP-2024-193, 2024.
Inspire Record 2808020 DOI 10.17182/hepdata.155514

The production cross sections of $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton$-$lead (p$-$Pb) collisions at the center-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. Nuclear modification factors ($R_{\mathrm {pPb}}$) of non-prompt $\mathrm {D^0}$, $\mathrm {D^+}$, and $\mathrm {\Lambda_{c}^{+}}$ are calculated as a function of the transverse momentum ($p_{\mathrm T}$) to investigate the modification of the momentum spectra measured in p$-$Pb collisions with respect to those measured in proton$-$proton (pp) collisions at the same energy. The $R_{\mathrm {pPb}}$ measurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significant $p_{\mathrm T}$ dependence. The $p_{\mathrm T}$-integrated cross sections and $p_{\mathrm T}$-integrated $R_{\mathrm {pPb}}$ of non-prompt $\mathrm {D^0}$ and $\mathrm {D^+}$ mesons are also computed by extrapolating the visible cross sections down to $p_{\mathrm T}$ = 0. The non-prompt D-meson $R_{\mathrm {pPb}}$ integrated over $p_{\mathrm T}$ is compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt $\mathrm {\Lambda_{c}^{+}/D^{0}}$ and $\mathrm{D^+/D^0}$ production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function of $p_{\mathrm T}$ display a similar trend to that measured for charm hadrons in the same collision system.

0 data tables match query

Version 2
Towards the understanding of the genuine three-body interaction for p$-$p$-$p and p$-$p$-\Lambda$

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.A 59 (2023) 145, 2023.
Inspire Record 2092560 DOI 10.17182/hepdata.134041

Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p$-$p$-$p and p$-$p$-\Lambda$ systems in terms of three-particle correlation functions carried out for pp collisions at $\sqrt{s} = 13$ TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p$-$p$-$p system, hinting to the presence of a residual three-body effect while for p$-$p$-\Lambda$ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC.

0 data tables match query

Light-flavor particle production in high-multiplicity pp collisions at $\mathbf{\sqrt{\textit{s}} = 13}$ TeV as a function of transverse spherocity

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Aglieri Rinella, Gianluca ; et al.
JHEP 05 (2024) 184, 2024.
Inspire Record 2711421 DOI 10.17182/hepdata.153642

Results on the transverse spherocity dependence of light-flavor particle production ($\pi$, K, p, $\phi$, ${\rm K^{*0}}$, ${\rm K}^{0}_{\rm{S}}$, $\Lambda$, $\Xi$) at midrapidity in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV were obtained with the ALICE apparatus. The transverse spherocity estimator ($S_{{\rm O}}^{{\it p}_{\rm T}=1}$) categorizes events by their azimuthal topology. Utilizing narrow selections on $S_{\text{O}}^{{\it p}_{\rm T}=1}$, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The $S_{{\rm O}}^{{\it p}_{\rm T}=1}$ estimator is found to effectively constrain the hardness of the events when the midrapidity ($\left | \eta \right |< 0.8$) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of $S_{{\rm O}}^{{\it p}_{\rm T}=1}$.

0 data tables match query