The HEPData database will be migrated to a new host between 08:00 and 09:00 (UTC) on 25th June 2025, leading to a few minutes of downtime.
Showing 10 of 28 results
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the absolute differential cross-section at particle level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,1}|$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at particle level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at particle level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at particle level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute normalized cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t,1}$ covariance matrix for the absolute differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the absolute differential cross-section at parton level.
$p_{T}^{t}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,1}$ covariance matrix for the normalized differential cross-section at parton level.
$|y^{t,1}|$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t,2}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t,2}|$ covariance matrix for the normalized differential cross-section at parton level.
$m^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ covariance matrix for the normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ covariance matrix for the normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ covariance matrix for the normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ covariance matrix for the normalized differential cross-section at parton level.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,2}|$ < 0.2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,2}|$ < 0.5 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,2}|$ < 1 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2 and the $|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,2}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}| $normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t,1}|$ < 1 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV and the $p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.3, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV and the $|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level for 0.9 < $|{y}^{t\bar{t}}|$ < 2, 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on $pp$ collision data corresponding to an integrated luminosity of 138 fb$^{-1}$ at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV.
The expected and observed upper limits at 95\% CL on the fiducial cross-section times branching ratio to two photons of a narrow-width ($\Gamma_{X}$ = 4 MeV) scalar resonance as a function of its mass $m_{X}$.
Diphoton invariant mass in the signal region using a 0.1 GeV binning.
Parametrization of the $C_{X}$ factor, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.
Parametrization of the $A_{X}$ factor, defined as the fraction of diphoton resonances satisfying the fiducial acceptance at the particle level, as function of $m_{X}$ obtained from the narrow width simulated signal samples produced in gluon fusion.
The correction factor, $C_{X}$, defined as the ratio between the number of reconstructed signal events passing the analysis cuts and the number of signal events at the particle level generated within the fiducial volume, and acceptance correction factor, $A_{X}$, defined as the fraction of diphoton resonances satisfying the fiducial acceptance at the particle level. Both are computed for NWA spin-0 models as a function of $m_{X}$.
Effect of event selections on a scalar MC signal sample generated for $m_{X}$ = 15 GeV and on the data. For the MC sample, the efficiencies are shown after applying event weights and a truth level filter that requires two photons with $p^{\gamma\gamma}_{T}>40$ GeV; for the data, the absolute yields are shown. The initial yields for data include a trigger preselection that is the OR of a list of single photon and diphoton triggers. The "2 $loose$ photons" step includes the kinematic acceptance cuts.
Parameterization of the Double Sided Crystal Ball function parameters describing the scalar mass resolution model as a function of $m_{X}$ [GeV].
A search for light long-lived neutral particles with masses in the $O$(MeV-GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon-gluon fusion or in association with a $W$ boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV $pp$ collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length $c\tau$ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV.
The reconstruction efficiency for μDPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a γ<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1 as a function of the transverse decay length L<sub>xy</sub>.
The reconstruction efficiency for μDPJ objects satisfying the cosmic-ray tagger selection produced in the decay of a γ<sub>d</sub> into a muon pair. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1 as a function of the γ<sub>d</sub> transverse momentum in events where the γ<sub>d</sub> L<sub>xy</sub> is below 6 m.
The reconstruction efficiency for caloDPJs produced by the decay of γ<sub>d</sub> into e<sup>+</sup>e<sup>-</sup> or qq̄. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as a function of the transverse decay length L<sub>xy</sub>. The efficiency drop at 2.5 m corresponds to the end of the first layer of the HCAL.
The reconstruction efficiency for caloDPJs produced by the decay of γ<sub>d</sub> into e<sup>+</sup>e<sup>-</sup> or qq̄. The reconstruction efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as a function of their transverse momentum in events where the γ<sub>d</sub> L<sub>xy</sub> is between 2 m and 4 m.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub>+X and ggF selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>2μ</sub><sup>ggF</sup>, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub>+X is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub>+X and ggF selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>c+μ</sub><sup>ggF</sup>, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub>+X is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub>+X and ggF selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>2c</sub><sup>ggF</sup>, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub>+X is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub>+X and WH selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>c</sub><sup>WH</sup>, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub>+X is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub>+X and WH selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>c+μ</sub><sup>WH</sup>, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub>+X is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub>+X and WH selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>2c</sub><sup>WH</sup>, assuming an FRVZ signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub>+X is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub> and ggF selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>2μ</sub><sup>ggF</sup>, assuming a HAHM signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub> is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub> and ggF selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>c+μ</sub><sup>ggF</sup>, assuming a HAHM signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub> is larger than unity.
Observed 95% CL upper limits on the branching ratio (B) for the decay H→ 2γ<sub>d</sub> and ggF selection, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown for the SR<sub>2c</sub><sup>ggF</sup>, assuming a HAHM signal model. The hatched band denotes the region in which the branching ratio of H→ 2γ<sub>d</sub> is larger than unity.
The CalRatio 2015--2016 trigger efficiency for the decay of γ<sub>d</sub> in e<sup>+</sup>e<sup>-</sup> or qq̄. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse decay length L<sub>xy</sub>.
The CalRatio 2015--2016 trigger efficiency for the decay of γ<sub>d</sub> in e<sup>+</sup>e<sup>-</sup> or qq̄. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse momentum, in events where the γ<sub>d</sub> L<sub>xy</sub> is between 2 m and 4 m.
The CalRatio 2017--2018 trigger efficiency for the decay of γ<sub>d</sub> in e<sup>+</sup>e<sup>-</sup> or qq̄. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse decay length L<sub>xy</sub>.
The CalRatio 2017--2018 trigger efficiency for the decay of γ<sub>d</sub> in e<sup>+</sup>e<sup>-</sup> or qq̄. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse momentum, in events where the γ<sub>d</sub> L<sub>xy</sub> is between 2 m and 4 m.
The narrow-scan 2015--2016 trigger efficiency for the decay of γ<sub>d</sub> in μ<sup>+</sup>μ<sup>-</sup>. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse decay length L<sub>xy</sub>.
The narrow-scan 2015--2016 trigger efficiency for the decay of γ<sub>d</sub> in μ<sup>+</sup>μ<sup>-</sup>. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse momentum, in events where the γ<sub>d</sub> L<sub>xy</sub> is below 6 m.
The narrow-scan 2017--2018 trigger efficiency for the decay of γ<sub>d</sub> in μ<sup>+</sup>μ<sup>-</sup>. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse decay length L<sub>xy</sub>.
The narrow-scan 2017--2018 trigger efficiency for the decay of γ<sub>d</sub> in μ<sup>+</sup>μ<sup>-</sup>. The trigger efficiency is shown for γ<sub>d</sub> with 0<|η|<1.1 as function of the transverse momentum, in events where the γ<sub>d</sub> L<sub>xy</sub> is below 6 m.
Efficiency of the cosmic-ray tagger as function of the γ<sub>d</sub> transverse decay length. The efficiency is calculated accepting the μDPJs for which the cosmic-ray tagger score is > 0.2 for each associated MS-only track.
Efficiency of the cosmic-ray tagger as function of the γ<sub>d</sub> transverse momentum. The efficiency is calculated accepting the μDPJs for which the cosmic-ray tagger score is > 0.2 for each associated MS-only track.
Efficiency of the QCD tagger as function of the γ<sub>d</sub> transverse decay length. The efficiency is calculated accepting the caloDPJs for which the QCD tagger score is > 0.5.
Efficiency of the QCD tagger as function of the γ<sub>d</sub> transverse momentum. The efficiency is calculated accepting the caloDPJs for which the QCD tagger score is > 0.5.
The extrapolated acceptance times efficiencies as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the SR<sub>2μ</sub><sup>ggF</sup>.
The extrapolated acceptance times efficiencies as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the SR<sub>c+μ</sub><sup>ggF</sup>.
The extrapolated acceptance times efficiencies as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the SR<sub>2c</sub><sup>ggF</sup>.
The extrapolated acceptance times efficiencies as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the SR<sub>c</sub><sup>WH</sup>.
The extrapolated acceptance times efficiencies as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the SR<sub>2c</sub><sup>WH</sup>.
The extrapolated acceptance times efficiencies as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the SR<sub>c+μ</sub><sup>WH</sup>.
The extrapolated acceptance times efficiencies for SR<sub>2μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a Higgs-like scalar with a mass of 800 GeV. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>c+μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a Higgs-like scalar with a mass of 800 GeV. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>2c;</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 2γ<sub>d</sub>+X process and a Higgs-like scalar with a mass of 800 GeV. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>2μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the HAHM H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the ggF channel.
The extrapolated acceptance times efficiencies for SR<sub>c+μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the HAHM H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the ggF channel.
The extrapolated acceptance times efficiencies for SR<sub>2c;</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the HAHM H→ 2γ<sub>d</sub>+X process and a SM Higgs boson for the ggF channel.
The extrapolated acceptance times efficiencies for SR<sub>2μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 4γ<sub>d</sub>+X process and a Higgs-like scalar with a mass of 800 GeV. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>c+μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 4γ<sub>d</sub>+X process and a Higgs-like scalar with a mass of 800 GeV. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>2c;</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 4γ<sub>d</sub>+X process and a Higgs-like scalar with a mass of 800 GeV. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>2μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 4γ<sub>d</sub>+X process and a SM Higgs boson. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>c+μ</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 4γ<sub>d</sub>+X process and a SM Higgs boson. The coloured bands represent the MC statistical uncertainties.
The extrapolated acceptance times efficiencies for SR<sub>2c;</sub><sup>ggF</sup>, as a function of the γ<sub>d</sub> mean proper lifetime cτ for the FRVZ pp → H→ 4γ<sub>d</sub>+X process and a SM Higgs boson. The coloured bands represent the MC statistical uncertainties.
Observed limits at the 95% CL on the branching ratio (B), obtained from the SR<sub>2μ</sub><sup>ggF</sup>, for the process pp → H→ 4γ<sub>d</sub>+X, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown assuming an FRVZ signal model.
Observed limits at the 95% CL on the branching ratio (B), obtained from the SR<sub>c+μ</sub><sup>ggF</sup>, for the process pp → H→ 4γ<sub>d</sub>+X, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown assuming an FRVZ signal model.
Observed limits at the 95% CL on the branching ratio (B), obtained from the SR<sub>2c</sub><sup>ggF</sup>, for the process pp → H→ 4γ<sub>d</sub>+X, for different γ<sub>d</sub> masses and a 125 GeV Higgs boson. The limits are shown assuming an FRVZ signal model.
Observed limits at the 95% CL on the cross section, obtained from the SR<sub>2μ</sub><sup>ggF</sup>, for the process pp → H→ 2γ<sub>d</sub>+X, for different γ<sub>d</sub> masses and a Higgs-like scalar with a mass of 800 GeV. The limits are shown assuming an FRVZ signal model.
Observed limits at the 95% CL on the cross section, obtained from the SR<sub>c+μ</sub><sup>ggF</sup>, for the process pp → H→ 2γ<sub>d</sub>+X, for different γ<sub>d</sub> masses and a Higgs-like scalar with a mass of 800 GeV. The limits are shown assuming an FRVZ signal model.
Observed limits at the 95% CL on the cross section, obtained from the SR<sub>2c</sub><sup>ggF</sup>, for the process pp → H→ 2γ<sub>d</sub>+X and ggF selection, for different γ<sub>d</sub> masses and a Higgs-like scalar with a mass of 800 GeV. The limits are shown assuming an FRVZ signal model.
Observed limits at the 95% CL on the cross section for the process pp → H→ 4γ<sub>d</sub>+X and ggF selection, for different γ<sub>d</sub> masses and a Higgs-like scalar with a mass of 800 GeV. The limits are shown for the 2μ search channel, assuming an FRVZ signal model.
Observed limits at the 95% CL on the cross section for the process pp → H→ 4γ<sub>d</sub>+X and ggF selection, for different γ<sub>d</sub> masses and a Higgs-like scalar with a mass of 800 GeV. The limits are shown for the c+μ search channel, assuming an FRVZ signal model.
Observed limits at the 95% CL on the cross section for the process pp → H→ 4γ<sub>d</sub>+X and ggF selection, for different γ<sub>d</sub> masses and a Higgs-like scalar with a mass of 800 GeV. The limits are shown for the 2c search channel, assuming an FRVZ signal model.
This paper presents a search for hypothetical massive, charged, long-lived particles with the ATLAS detector at the LHC using an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light and should be identifiable by their high transverse momenta and anomalously large specific ionisation losses, ${\mathrm{d}}E/\mathrm{d}x$. Trajectories reconstructed solely by the inner tracking system and a ${\mathrm{d}}E/\mathrm{d}x$ measurement in the pixel detector layers provide sensitivity to particles with lifetimes down to ${\cal O}(1)$$\text{ns}$ with a mass, measured using the Bethe--Bloch relation, ranging from 100 GeV to 3 TeV. Interpretations for pair-production of $R$-hadrons, charginos and staus in scenarios of supersymmetry compatible with these particles being long-lived are presented, with mass limits extending considerably beyond those from previous searches in broad ranges of lifetime.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Inclusive_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Inclusive. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $|\eta|$ distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Inclusive_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed mass distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
Lower limits on the gluino mass, from gluino $R$-hadron pair production, as a function of gluino lifetime for two neutralino mass assumptions of (a) $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$ and (b) $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$. The upper $1 \sigma_\text{exp}$ expected bound is very close to the expected limit for some lifetime values due to the expected background getting very close to 0 events.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
(a) Lower limits on the chargino mass as a function of lifetime, and (b) the contours around the excluded mass-lifetime region for stau pair production.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-LowPt-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_Low. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL0_High. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Trk-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
Comparison of the observed and expected VAR distributionsin VR-HiEta-Mu-IBL1. The band on the expected background estimation indicates the total uncertainty of the estimation. Downward triangle markers at the bottom of the panels indicate there is no events observed in the corresponding bin, while upward triangle markers at the bottom panel indicate the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed $p_{\rm T$ distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_Low signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL0_High signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Trk-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
The observed dE/dx distribution in the SR-Mu-IBL1 signal-region bin. The band on the expected background indicates the total uncertainty of the estimation. Several representative signal models are overlaid. Events outside the shown range are accumulated in the rightmost bin indicated as 'Overflow'. Downward triangle markers at the bottom of the panels indicate that no events are observed in the corresponding mass bin, while upward triangle markers in the lower panels indicate that the observed data is beyond the range.
Expected and observed distributions in SR-Inclusive_Low of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of missing transverse momentum. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of relative phi-angle between pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track, and the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the relative phi-angle between pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the transverse mass of pTmiss and the leading jet pT, required to be separated by at least deltaR > 0.4 with respect to the signal candidate track. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_Low of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
Expected and observed distributions in SR-Inclusive_High of the effective mass, defined as the scalar sum pT of the signal candidate track, jets satisfying pT > 30 GeV, excluding ones within deltaR < 0.4 with respect to the signal candidate track, and pTmiss. The expected background distribution is calculated for each |eta| slice using CR-kin control region as the template and applying the scale factor using the dE/dx distribution in CR-dEdx of the corresponding |eta| slice. The last bins of the plots include overflow events above the range.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $m(\tilde{\chi}_{1}^{0}) = 100 \text{GeV}$, with lifetime with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for gluinos with $\Delta m(\tilde{g}, \tilde{\chi}_{1}^{0}) = 30 \text{GeV}$, with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, and (d) 30 ns.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for charginos with lifetime (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
The expected upper limits on cross-section for sleptons with lifetime (a) 1 ns, (b) 3 ns, (c) 10 ns, (d) 30 ns, and (e) stable.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Muon reconstruction efficiency as a function of β and |η| for (a) stable charginos and (b) stable charged R-hadrons. For weakly interacting LLPs with calorimeter materials the efficiency for the chargino is recommended to refer to. The muon reconstruction efficiency for R-hadrons is significantly lower due to having QCD interactions with materials.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Trigger and event selection efficiencies. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
Signal track selection efficiency as a function of CLLP $\beta\gamma$ for SR-Inclusive_Low and SR-Inclusive_High bins. The band on the marker indicates a typical size of fluctuation by the LLP mass and lifetime observed by the samples used in efficiency derivation, but it does not indicate the full envelope of model dependence.
A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb$^{-1}$. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson's mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided.
Comparison between data and SM predictions for the meff distributions in the boosted SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.
Comparison between data and SM predictions for the meff distributions in the resolved SR. The background predictions are obtained through a background-only simultaneous fit and are shown as filled histograms. The entries in overflow are included in the last bin. The size of the combined statistical and systematic uncertainty for the sum of the fitted background is indicated by the hatched band. The ratio of the data to the sum of the fitted background is shown in the lower panel. Two benchmark signal samples, as indicated in the legend, are also shown as unstacked unfilled histograms normalised to the integrated luminosity of the data using the theoretical cross-sections.
Expected 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.
Expected 95% CL upper limits with 1-sigma uncertainty on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.
Expected 95% CL upper limits with 2-sigma uncertainty on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.
Observed 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 300 GeV.
Expected 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 600 GeV.
Expected 95% CL upper limits with 1-sigma uncertainty on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 600 GeV.
Expected 95% CL upper limits with 2-sigma uncertainty on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 600 GeV.
Observed 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 600 GeV.
Expected 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 900 GeV.
Expected 95% CL upper limits with 1-sigma uncertainty on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 900 GeV.
Expected 95% CL upper limits with 2-sigma uncertainty on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 900 GeV.
Observed 95% CL upper limits on the production of a heavy Higgs boson as functions of fw and fww with mass equal to 900 GeV.
Observed (black solid curve) and expected (black dashed curve) 95% CL upper limits on the production of a heavy Higgs boson as functions of its mass with ( fW, fWW) fixed at (0, 6200). The green (inner) and yellow (outer) bands represent 1 and 2 sigma uncertainty in the expected limits. Theoretical predictions (red solid curve) as functions of the heavy Higgs boson mass are overlaid.
Observed (black solid curve) and expected (black dashed curve) 95% CL upper limits on the production of a heavy Higgs boson as functions of its mass with ( fW, fWW) fixed at (1350, 0). The green (inner) and yellow (outer) bands represent 1 and 2 sigma uncertainty in the expected limits. Theoretical predictions (red solid curve) as functions of the heavy Higgs boson mass are overlaid.
A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.
Acceptance times efficiency for the full analysis selections as a function of the resonance mass mX in the hadhad, lephad SLT and lephad LTT trigger categories, and the combined lephad. The acceptance times efficiency is evaluated for HH to bbtautau decays, with respect to the targeted tau-lepton decay modes (lephad or hadhad).
Post-fit distribution of mHH in the hadhad channel.
Post-fit distribution of mHH in the lephad SLT channel.
Post-fit distribution of mHH in the lephad LTT channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of mtautau MMC in the hadhad channel.
Post-fit distribution of of di-b-jet mass in the hadhad channel.
Post-fit distribution of di-b-jet mass in the LTT lephad channel.
Post-fit distribution of di-b-jet mass in the LTT lephad channel.
BDT for SM HH in the hadhad channel
NN for SM HH in the lephad SLT channel
NN for SM HH in the lephad LTT channel
PNN for mX = 500 GeV resonant HH in the hadhad channel
PNN for mX = 500 GeV resonant HH in the lephad SLT channel
PNN for mX = 500 GeV resonant HH in the lephad LTT channel
PNN for mX = 1000 GeV resonant HH in the hadhad channel
PNN for mX = 1000 GeV resonant HH in the lephad SLT channel
PNN for mX = 1000 GeV resonant HH in the lephad LTT channel
Event yields as a function of log10(S/B) for data, background and non-resonant HH signal. Final discriminant bins from the hadhad, lephad SLT and lephad LTT categories are combined into bins of log10(S/B). The B is the fitted background yield assuming background-only hypothesis, and the signal S is scaled to the SM expected cross-section.
Observed and expected limits at 95% CL on the cross-section of the resonant HH production as a function of the scalar resonance mass mX.
Post-fit distribution of delta-R between the taus in the hadhad channel.
Post-fit distribution of delta-R between the b-tagged jets in the hadhad channel.
Post-fit distribution of delta-R between the taus in the lephad SLT channel.
Post-fit distribution of delta-R between the b-tagged jets in the lephad SLT channel.
Post-fit distribution of delta-pT between the tau and lepton in the lephad SLT channel.
Post-fit distribution of pT of the subleading b-tagged jet in the lephad SLT channel.
Post-fit distribution of MTW in the lephad SLT channel.
Post-fit distribution of missing transverse momentum in the lephad SLT channel.
Post-fit distribution of missing transverse momentum centrality in the lephad SLT channel.
Post-fit distribution of delta-phi between the Higgs boson candidates in the lephad SLT channel.
Post-fit distribution of delta-pT between the tau and lepton in the lephad LTT channel.
Post-fit distribution of delta-R between the taus in the lephad LTT channel.
Post-fit distribution of delta-phi between the lepton and the missing transverse momentum in the lephad LTT channel.
Post-fit distribution of delta-phi between the Higgs boson candidates in the lephad LTT channel.
Post-fit distribution of the total transverse momentum s in the lephad LTT channel.
PNN for mX = 300 GeV resonant HH in the hadhad channel
PNN for mX = 300 GeV resonant HH in the lephad SLT channel
PNN for mX = 300 GeV resonant HH in the lephad LTT channel
PNN for mX = 1600 GeV resonant HH in the hadhad channel
PNN for mX = 1600 GeV resonant HH in the lephad SLT channel
PNN for mX = 1600 GeV resonant HH in the lephad LTT channel
Local p-value of the background-only hypothesis as a function of the resonance mass.
A search for flavour-changing neutral-current decays of a top quark into an up-type quark (either up or charm) and a light scalar particle $X$ decaying into a bottom anti-bottom quark pair is presented. The search focuses on top-quark pair production where one top quark decays to $qX$, with $X \rightarrow b\bar{b}$, and the other top quark decays according to the Standard Model, with the $W$ boson decaying leptonically. The final state is thus characterised by an isolated electron or muon and at least four jets. Events are categorised according to the multiplicity of jets and jets tagged as originating from $b$-quarks, and a neural network is used to discriminate between signal and background processes. The data analysed correspond to 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV, recorded with the ATLAS detector at the LHC. The 95% confidence-level upper limits between 0.019% and 0.062% are derived for the branching fraction $\mathcal{B}$($t \rightarrow uX$) and between 0.018% and 0.078% for the branching fraction $\mathcal{B}$($t \rightarrow cX$), for masses of the scalar particle $X$ between 20 and 160 GeV.
Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow uX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.
Expected and observed 95% CL upper limits for $\mathcal{B}$($t \rightarrow cX$) $\times$ $\mathcal{B}$($X \rightarrow b\bar{b}$). The bands surrounding the expected limits show the 68% and 95% confidence intervals, respectively.
Event yields of the signal and SM background processes in the six analysis regions after the fit to the data under the $t \rightarrow uX$ hypothesis assuming $m_X = 30$ GeV. Total includes signal and background.The quoted uncertainties take into account correlations and constraints of the nuisance parameters and include both the statistical and systematic uncertainties. Negative correlations between the $t\bar{t} +$ light, $t\bar{t} + \geq1b$ and $t\bar{t} + \geq1c$ modelling uncertainties can make the uncertainty in the total yields smaller than in the individual components.
Event yields of the signal and SM background processes in the six analysis regions after the fit to the data under the $t \rightarrow cX$ hypothesis assuming $m_X = 30$ GeV. Total includes signal and background.The quoted uncertainties take into account correlations and constraints of the nuisance parameters and include both the statistical and systematic uncertainties. Negative correlations between the $t\bar{t} +$ light, $t\bar{t} + \geq1b$ and $t\bar{t} + \geq1c$ modelling uncertainties can make the uncertainty in the total yields smaller than in the individual components.
Event acceptance times efficiency in percent for every $t\rightarrow uX$ and $t\rightarrow cX$ mass signal sample.
Cut flow for the scalar signal in the $t\rightarrow uX$ decay combining both quark and anti-quark samples. Shown for each signal are the corresponding mass, the number of generated events, the number of reconstructed ("Reco") events, the events that pass the lepton triggers, the events that have only one electron ("el") or only one muon ("mu") with p$_{\text{T}}$ larger than 27 GeV, the number of events with at least four jets with p$_{\text{T}}$ larger than 25 GeV, the number of events with at least three $b$-tagged jets at the 70% efficiency working point, and the number of events with at least two $b$-tagged jets at the 60% efficiency working point and at least another one at the 70%. The quoted yields do not include reweighting.
Cut flow for the scalar signal in the $t\rightarrow cX$ decay combining both quark and anti-quark samples. Shown for each signal are the corresponding mass, the number of generated events, the number of reconstructed ("Reco") events, the events that pass the lepton triggers, the events that have only one electron ("el") or only one muon ("mu") with p$_{\text{T}}$ larger than 27 GeV, the number of events with at least four jets with p$_{\text{T}}$ larger than 25 GeV, the number of events with at least three $b$-tagged jets at the 70% efficiency working point, and the number of events with at least two $b$-tagged jets at the 60% efficiency working point and at least another one at the 70%. The quoted yields do not include reweighting.
Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into $W^{+}W^{-}$ in the $\ell^\pm\nu q \bar q'$ final states with $\ell=e,\mu$ is presented. This analysis uses 139 fb$^{-1}$ of $pp$ collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The $W^\pm \to q\bar q'$ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied.
Probability of finding at least one TAR jet, where the p<sub>T</sub>-leading TAR jet passes the m<sub>Wcand</sub> and D<sub>2</sub><sup>β=1</sup> requirements, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=2100 GeV, with the preselections applied.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=500 GeV, with the preselections applied that do not pass the requirements of the merged category.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1000 GeV, with the preselections applied that do not pass the requirements of the merged category.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=1700 GeV, with the preselections applied that do not pass the requirements of the merged category.
Probability of finding a W<sub>had</sub> candidate reconstructed as a pair of R=0.4 PFlow jets, as a function of m<sub>s</sub>. The probability is determined in a sample of signal events with m<sub>Z'</sub>=2100 GeV, with the preselections applied that do not pass the requirements of the merged category.
Observed exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected+1σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected-1σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected+2σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Expected-2σ exclusion contour at 95% C.L. for the dark Higgs model in the (m<sub>Z'</sub>, m<sub>s</sub>) plane for g<sub>q</sub>=0.25, g<sub>χ</sub>=1, m<sub>χ</sub>=200 GeV, and sinθ=0.01.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=0.5 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=0.5 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=1 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=1 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=1.7 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=1.7 TeV, shown in dashed blue.
Observed upper limits at 95% C.L. on σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) for m<sub>Z'</sub>=2.1 TeV as a function of m<sub>s</sub>. The expected limits, varied up and down by one and two standard deviations, are shown as green and yellow bands, respectively. The observed and expected limits are compared to the theoretical LO cross section for the σ(pp → s χχ) × B(s → W<sup>±</sup> W<sup>∓</sup>) process for m<sub>Z'</sub>=2.1 TeV, shown in dashed blue.
Data overlaid on SM background yields stacked in each SR and CR category after the fit to data ('Post-fit'). The yields in the SR are broken down into their contributions to the individual bins. The maximum-likelihood estimators are set to the conditional values of the CR-only fit, and propagated to SR and CRs.
Dominant sources of uncertainty for three dark Higgs scenarios after the fit to data. The uncertainties are quantified in terms of their contribution to the fitted signal uncertainty that is expressed relative to the theory prediction. Three representative dark Higgs signal scenarios with g<sub>q</sub>=0.25, g<sub>χ</sub>=1.0, sinθ=0.01 and m<sub>χ</sub>=200 GeV are considered, which are indicated using the (m<sub>Z'</sub>, m<sub>s</sub>) format in units of GeV in the table columns.
Cumulative efficiencies in the merged category for three representative dark Higgs signal scenarios with g<sub>q</sub>=0.25, g<sub>&chi</sub>;=1.0, sinθ=0.01, m<sub>Z'</sub> = 1 TeV, and m<sub>χ</sub>=200 GeV considering s→W(ℓν)W(qq) decays only.
Cumulative efficiencies in the resolved category for three representative dark Higgs signal scenarios with g<sub>q</sub>=0.25, g<sub>&chi</sub>;=1.0, sinθ=0.01, m<sub>Z'</sub> = 1 TeV, and m<sub>χ</sub>=200 GeV considering s→W(ℓν)W(qq) decays only.
Theoretical cross section for σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) for each of the dark Higgs signal points at m<sub>Z′</sub> ={300, 350, 400, 500, 750} GeV, with g<sub>q</sub> = 0.25, g<sub>χ = 1.0, sinθ = 0.01, m<sub>Z′</sub> = 1 TeV , and m<sub>χ</sub> = 200 GeV. Also shown are experimentally excluded cross sections of σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) (Obs.) together with the expectations (Exp.) varied up and down by one standard deviation (±1σ).
Theoretical cross section for σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) for each of the dark Higgs signal points at m<sub>Z′</sub> ={1000, 1700} GeV, with g<sub>q</sub> = 0.25, g<sub>χ = 1.0, sinθ = 0.01, m<sub>Z′</sub> = 1 TeV , and m<sub>χ</sub> = 200 GeV. Also shown are experimentally excluded cross sections of σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) (Obs.) together with the expectations (Exp.) varied up and down by one standard deviation (±1σ).
Theoretical cross section for σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) for each of the dark Higgs signal points at m<sub>Z′</sub> ={2100, 2500, 2900, 3300} GeV, with g<sub>q</sub> = 0.25, g<sub>χ = 1.0, sinθ = 0.01, m<sub>Z′</sub> = 1 TeV , and m<sub>χ</sub> = 200 GeV. Also shown are experimentally excluded cross sections of σ(pp → sχχ) × B(s → W<sup>±</sup>W<sup>∓</sup>) (Obs.) together with the expectations (Exp.) varied up and down by one standard deviation (±1σ).
A search for flavour-changing neutral current (FCNC) $tqH$ interactions involving a top quark, another up-type quark ($q=u$, $c$), and a Standard Model (SM) Higgs boson decaying into a $\tau$-lepton pair ($H\rightarrow \tau^+\tau^-$) is presented. The search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV that corresponds to an integrated luminosity of 139 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson ($pp\rightarrow tH$), and top quark pair production in which one of the top quarks decays into $Wb$ and the other decays into $qH$ through the FCNC interactions. The search selects events with two hadronically decaying $\tau$-lepton candidates ($\tau_{\text{had}}$) or at least one $\tau_{\text{had}}$ with an additional lepton ($e$, $\mu$), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3$\sigma$ above the expected SM background, and 95% CL upper limits on the $t\to qH$ branching ratios are derived. The observed (expected) 95% CL upper limits set on the $t\to cH$ and $t\to uH$ branching ratios are $9.4 \times 10^{-4}$ $(4.8^{+2.2}_{-1.4}\times 10^{-4})$ and $6.9\times 10^{-4}$ $(3.5^{+1.5}_{-1.0}\times 10^{-4})$, respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective $tqH$ couplings are $C_{c\phi} <1.35$ $(0.97)$ and $C_{u\phi} <1.16$ $(0.82)$.
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}\tau_{had}$ region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-1j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-2j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{lep}\tau_{had}$-2j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{lep}\tau_{had}$-3j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}\tau_{had}$SS region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{had}\tau_{had}$-2j region. Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{had}\tau_{had}$-3j region. Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Leading tau Pt distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{had}\tau_{had}$-3jSS region. Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}\tau_{had}$ region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-1j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}$-2j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{lep}\tau_{had}$-2j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{lep}\tau_{had}$-3j region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{\ell}\tau_{had}\tau_{had}$SS region. Other MC includes single top, V+jets, and other small backgrounds. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{had}\tau_{had}$-2j region. Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{had}\tau_{had}$-3j region. Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
Di-tau mass distributions obtained before the fit to data (Pre-Fit) showing the expected background and tuH signals after applying fake factors in the $t_{h}\tau_{had}\tau_{had}$-3jSS region. Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. The tuH signals with nominal branching ratio of 0.1% are scaled using normalization factors of 2 to 50. Statistical and systematic uncertainties are included in the "Total background".
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{\ell}\tau_{had}\tau_{had}$ region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{\ell}\tau_{had}$-1j region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{\ell}\tau_{had}$-2j region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{h}\tau_{lep}\tau_{had}$-2j region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{h}\tau_{lep}\tau_{had}$-3j region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{\ell}\tau_{had}\tau_{had}$SS region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{h}\tau_{had}\tau_{had}$-2j region, Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{h}\tau_{had}\tau_{had}$-3j region, Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tuH search in the $t_{h}\tau_{had}\tau_{had}$-3jSS region, Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(uH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{\ell}\tau_{had}\tau_{had}$ region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{\ell}\tau_{had}$-1j region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{\ell}\tau_{had}$-2j region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{h}\tau_{lep}\tau_{had}$-2j region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{h}\tau_{lep}\tau_{had}$-3j region,Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{\ell}\tau_{had}\tau_{had}$SS region, Other MC includes single top, V+jets, and other small backgrounds. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{h}\tau_{had}\tau_{had}$-2j region, Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{h}\tau_{had}\tau_{had}$-3j region, Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
BDT output distributions obtained from a signal+background fit to the data for the tcH search in the $t_{h}\tau_{had}\tau_{had}$-3jSS region, Rare includes single top, V+jets, and other small backgrounds. $\tau_{sub}$ real includes the contribution of fakes for which the sub-leading tau is real. Statistical and systematic uncertainties are included in the "Total background". The signal shapes of tt(cH), tH, and their sum are also shown using a normalisation of 2 x $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ of 0.1%.
95% CL upper limits on $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$ for the individual searches as well as their combination, assuming $\mathcal{B}(\mathrm{t}\to\mathrm{uH}) = 0$. The observed limits are compared with the expected (median) limits under the background-only hypothesis. The surrounding shaded bands correspond to the 68% and 95% CL intervals around the expected limits, denoted by $\pm 1\sigma$ and $\pm 2\sigma$, respectively.
95% CL upper limits on $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ for the individual searches as well as their combination, assuming $\mathcal{B}(\mathrm{t}\to\mathrm{cH}) = 0$. The observed limits are compared with the expected (median) limits under the background-only hypothesis. The surrounding shaded bands correspond to the 68% and 95% CL intervals around the expected limits, denoted by $\pm 1\sigma$ and $\pm 2\sigma$, respectively.
Observed upper limits at 95% CL on the branching fractions in the plane of $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ and $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$.
Expected upper limits at 95% CL on the branching fractions in the plane of $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ and $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$.
Expected $+2\sigma$ upper limits at 95% CL on the branching fractions in the plane of $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ and $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$.
Expected $+1\sigma$ upper limits at 95% CL on the branching fractions in the plane of $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ and $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$.
Expected $-1\sigma$ upper limits at 95% CL on the branching fractions in the plane of $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ and $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$.
Expected $-2\sigma$ upper limits at 95% CL on the branching fractions in the plane of $\mathcal{B}(\mathrm{t}\to\mathrm{uH})$ and $\mathcal{B}(\mathrm{t}\to\mathrm{cH})$.
Observed upper limits at 95% CL on the anomalous couplings in the plane of $C_{\mathrm{c\phi}}$ and $C_{\mathrm{u\phi}}$.
Expected upper limits at 95% CL on the anomalous couplings in the plane of $C_{\mathrm{c\phi}}$ and $C_{\mathrm{u\phi}}$.
Expected $+2\sigma$ upper limits at 95% CL on the anomalous couplings in the plane of $C_{\mathrm{c\phi}}$ and $C_{\mathrm{u\phi}}$.
Expected $+1\sigma$ upper limits at 95% CL on the anomalous couplings in the plane of $C_{\mathrm{c\phi}}$ and $C_{\mathrm{u\phi}}$.
Expected $-1\sigma$ upper limits at 95% CL on the anomalous couplings in the plane of $C_{\mathrm{c\phi}}$ and $C_{\mathrm{u\phi}}$.
Expected $-2\sigma$ upper limits at 95% CL on the anomalous couplings in the plane of $C_{\mathrm{c\phi}}$ and $C_{\mathrm{u\phi}}$.
A search for a long-lived, heavy neutral lepton ($\mathcal{N}$) in 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV $pp$ collision data collected by the ATLAS detector at the Large Hadron Collider is reported. The $\mathcal{N}$ is produced via $W \rightarrow \mathcal{N} \mu$ or $W \rightarrow \mathcal{N} e$ and decays into two charged leptons and a neutrino, forming a displaced vertex. The $\mathcal{N}$ mass is used to discriminate between signal and background. No signal is observed, and limits are set on the squared mixing parameters of the $\mathcal{N}$ with the left-handed neutrino states for the $\mathcal{N}$ mass range $3$ GeV $< m_{\mathcal{N}} < 15$ GeV. For the first time, limits are given for both single-flavor and multiflavor mixing scenarios motivated by neutrino flavor oscillation results for both the normal and inverted neutrino-mass hierarchies.
Expected and observed 95% CL for the 1SFH e Dirac model.
Expected and observed 95% CL for the 1SFH e Majorana model.
Expected and observed 95% CL for the 1SFH mu Dirac model.
Expected and observed 95% CL for the 1SFH mu Majorana model.
Expected and observed 95% CL for the 2QDH NH Dirac model.
Expected and observed 95% CL for the 2QDH NH Majorana model.
Expected and observed 95% CL for the 2QDH IH Dirac model.
Expected and observed 95% CL for the 2QDH IH Majorana model.
Cutflow for six simulated signal channels showing the weighted number of expected events based on the single-flavour mixing model in the Majorana limit. Each column uses the generated signal sample with the mass hypothesis $m_N = 10$ GeV and proper decay length $c\tau_N = 10$ mm.
Cutflow for the six channels in data showing the number of events passing each successive signal selection for Majorana HNLs.
The event selection efficiency for each mass-lifetime point in all six studied channels. Shown is the fraction of the produced MC simulation events that pass all signal region selections. An entry of 0 indicates no events were selected.
The dominant signal uncertainty is due to differences in reconstruction of displaced vertices and tracks between data and MC. This is evaluated by comparing $K^{0}_{S} \rightarrow \pi^+\pi^-$ event yields in the VR and in MC produced with Pythia8.186 in bins of $p_\mathrm{T}$ and $r_\mathrm{DV}$. The data/MC ratio is normalized to the bin nearest the IP where the tracking and vertexing reconstruction algorithms are expected to be most robust. The symmetrized difference from 1.0 is applied to each signal vertex as a per-event systematic variation.
Expected and observed yields in the different analysis regions (prefit) for the 1SFH e Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH e Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH e Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH e Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH u Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH u Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 1SFH u Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 1SFH u Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (NH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (NH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (NH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (NH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (IH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (IH) Dirac model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (prefit) for the 2QDH (IH) Majorana model (10 GeV, 10mm).
Expected and observed yields in the different analysis regions (postfit) for the 2QDH (IH) Majorana model (10 GeV, 10mm).
The total displaced vertexing efficiency as a function of $r_{DV}$ for the custom configuration used in this analysis. The definition of the secondary vertex efficiency can be found in defined in \cite{ATL-PHYS-PUB-2019-013}. The efficiency is shown for $\mu-\mu\mu$, $\mu-\mu e$ and $\mu-ee$ signals with $m_N=10$~GeV and $c\tau_N=10$~mm.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.