Exclusive ϱ 0 production has been measured in 120, 200 and 280 GeV muon-proton interactions at high Q 2 (1 GeV 2 < Q 2 < 25 GeV 2 ) and W (6 GeV < W < 19 GeV). The photoproduction cross section decreases as 1/ Q 4 . A shallow t distribution, typical of a hard scattering process is observed and the ϱ 0 is found to be dominantly in the helicity zero spin state. The ϱ 0 s are mainly produced by transverse photons and s -channel helicity conservation seems to be invalid. The data cannot be described by the vector meson dominance model. These data show that at high Q 2 even exclusive ϱ 0 muoproduction is a hard scattering process and that the soft hadron-like properties of the photon have disappeared.
No description provided.
No description provided.
SYSTEMATIC ERROR ON SLOPE IN 0.8.
The production of antideuterons has been observed in electron-positron annihilations at center-of-mass energies around 10 GeV. Antideuterons have been identified unambiguously by their energy loss in the drift chamber, their time-of-flight and the pattern of their energy deposition in the shower counters of the ARGUS detector. The production rate in the momentum range (0.6−1.8) GeV/ c is (1.6 −0.7 +1.0 ) × 10 −5 per hadronic event.
Results from 6 antideuterons detected (3 from UPSI(2S), 2 from (IS) and 1 from (4S)).
No description provided.
The fragmentation of the hadronic system into Λ, Σ(1385), K ) and K ∗ (892) in deep-inelastic charged-current interactions of high energy neutrinos and antineutrinos with proton and neutron is analyzed. The results obtained for the production of these particles from the various initial states are compared with each other and with the predictions of the Lund fragmentation model. This comparison shows that a spectator diquark does not fragment as a whole in a fraction of the interactions. The role of the sea quarks in the baryon formation process is underlined. Strange vector and pseudoscalar mesons are likely to be produced at similar rates.
No description provided.
SIG(C=LAMBDA) denotes the inclusive LAMBDA production in the same reaction.
SIG(C=KS) denotes the inclusive KS production in the same reaction.
Results are presented from experiment WA7 at the CERN SPS, which has measured the elastic differential cross sections of π ± p, K ± p, p p and pp at incident momen ta of 20, 30 and 50 GeV/ c . The measurements cover the momentum transfer range 0.5 < | t | < 8 (GeV/ c ) 2 , corresponding to c.m. scattering angles between 10° and 50°. The experimental set-up, trigger logic and data analysis are described. The experimental results are compared with existing meson-proton and nucleon-proton data at lower and higher energies covering the medium- and large-| t | region. Some prominent models and their predictions for elastic scattering at WA7 energies and beyond are reviewed, with emphasis on geometrical scaling, factorizing eikonal models, lowest-order QCD and other dynamical exchange-type models. Results for p p two-body annihilation into π − π + and K − K + at 30 and 50 GeV/ c , obtained in parallel with the elastic p p data, are also presented.
No description provided.
No description provided.
No description provided.
Momenta of charged particles produced in inelastic αα, αp, andpp collisions were measured using the Split-Field-Magnet detector at the CERN Intersecting Storage Rings. Inclusive and semi-in-clusive spectra are presented as a function of rapidityy, Feynman-x, and transverse momentumpT. The inclusivey distributions agree well with predictions of the dual parton model; the highest particle densities are reached aty≃0 and the momenta of leading protons decrease significantly for increasing total multiplicity. ‘Temperatures’ are equal in αα, αp, andpp interactions. ThepT distributions depend weakly on the multiplicity.
No description provided.
No description provided.
No description provided.
We report measurements of single-particle inclusive spectra and two-particle correlations in decays of the Υ(1S) resonance and in nonresonant annihilations of electrons and positrons at center-of-mass energy 10.49 GeV, just below BB¯ threshold. These data were obtained using the CLEO detector at the Cornell Electron Storage Ring (CESR) and provide information on the production of π, K, ρ, K*, φ, p, Λ, and Ξ in quark and gluon jets. The average multiplicity of hadrons per event for upsilon decays (compared with continuum annihilations) is 11.4 (10.5) pions, 2.4 (2.2) kaons, 0.6 (0.5) ρ0, 1.2 (0.8) K*, 0.6 (0.4) protons and antiprotons, 0.15 (0.08) φ, 0.19 (0.07) Λ and Λ¯, and 0.016 (0.005) Ξ− and Ξ¯ +. We have also seen evidence for η and f0 production. The most significant differences between upsilon and continuum final states are (1) the inclusive energy spectra fall off more rapidly with increasing particle energy in upsilon decays, (2) the production of heavier particles, especially baryons, is not as strongly suppressed in upsilon decays, and (3) baryon and antibaryon are more likely to be correlated at long range in upsilon decay than in continuum events.
No description provided.
No description provided.
VALUES AT X = 0.10 ARE ACTUALLY AP RATES DOUBLED.
The CDHS neutrino detector has been used to measure events originating in a tank of liquid hydrogen and in the iron of the detector. Total cross-sections, differential cross-sections, and structure functions are given for hydrogen and compared with those in iron. The measurements are in agreement with the expectations of the quark parton model. No significant differences indicative of nuclear binding effects in corresponding structure functions of protons and iron are observed. This may be of special interest in the case of the sea structure functions, since large differences are expected in some models.
No description provided.
No description provided.
No description provided.
We have used the momentum spectrum of leptons produced in semileptonic B-meson decays to set a 90%-confidence-level upper limit on Γ(b→ulν)Γ(b→clν) of 4%. We also measure the semileptonic branching fractions of the B meson to be (12.0±0.7±0.5)% for electrons and (10.8±0.6±1.0)% for muons.
No description provided.
No description provided.
We have obtained a sample of 20 465 (2201) events in the channel pp→ ( Λ 0 K + )p at 50 (30) GeV/ c incident momentum with Geneva-Lausanne spectrometer at the CERN SPS. In this analysis we investigate: 1. (i) the production of N ∗ (I = 1 2 ) states in the mass region 1.6 ⩽ M ( Λ 0 K + ) ⩽ 2.6 GeV and momentum transfer 0.06 ⩽ | t | 1.0 (GeV/ c ) 2 , by studing the amplitudes and phases from a moment analysis of the decay angular distribution; 2. (ii) the contribution of the K-exchange Deck model for M ( Λ 0 K + < 2.22 GeV; 3. (iii) the double Regge exchange phenomenology for s Λ 0 K + > 5 GeV 2 and s Λ 0 K + p > 5 GeV 2 .
No description provided.
No description provided.
No description provided.
The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.
No description provided.
No description provided.
No description provided.