None
No description provided.
No description provided.
Measurements have been made of the total charge-exchange cross section π − p to π 0 n over the laboratory kinetic energy range 90 to 290 MeV. The data have an absolute accuracy of typically 1%, and have here been used to determine the pion-nucleon P 13 phase shift.
QUADRATIC INTERPOLATION.
No description provided.
No description provided.
Measurements have been made of the π ∓ proton total cross sections over the laboratory kinetic energy range 70 to 290 MeV. The absolute accuracy of the data is generally 0.5 %, but decreases to 1 % for some points where applied corrections are large or where low particle fluxes limit the statistical accuracy.
No description provided.
No description provided.
No description provided.
We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.
The measurements of the transmission regeneration amplitude on hydrogen in the momentum region of 14–42 GeV/ c indicate that in accordance with the Pomeranchuk theorem its magnitude |ƒ° − ƒ °|/k decreases as energy increases and its phase is approximately constant and equal to arg (ƒ° − ƒ °) = (−118 ± 13)° .
THE REGENERATION AMPLITUDE DECREASES OVER THIS ENERGY RANGE.
None
No description provided.
None
No description provided.
None
No description provided.
We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.
No description provided.
We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.
No description provided.
THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.