Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.
Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.
The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.
Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.
We present two-dimensional (2D) two-particle angular correlations on relative pseudorapidity $\eta$ and azimuth $\phi$ for charged particles from Au-Au collisions at $\sqrt{s_{\rm NN}} = 62$ and 200 GeV with transverse momentum $p_t \geq 0.15$ GeV/$c$, $|\eta| \leq 1$ and $2\pi$ azimuth. Observed correlations include a {same-side} (relative azimuth $< \pi/2$) 2D peak, a closely-related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until mid-centrality where a transition to a qualitatively different centrality trend occurs within a small centrality interval. Above the transition point the number of same-side and away-side correlated pairs increases rapidly {relative to} binary-collision scaling, the $\eta$ width of the same-side 2D peak also increases rapidly ($\eta$ elongation) and the $\phi$ width actually decreases significantly. Those centrality trends are more remarkable when contrasted with expectations of jet quenching in a dense medium. Observed centrality trends are compared to {\sc hijing} predictions and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy ion collision scenarios which invoke rapid parton thermalization. On the other hand, if the collision system is effectively opaque to few-GeV partons the observations reported here would be inconsistent with a minijet picture.
FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).
FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).
FIG. 1. (Color online) Perspective views of $2 \mathrm{D}$ charge-independent angular correlations $\Delta \rho / \sqrt{\rho_{\mathrm{ref}}}$ on $\left(\eta_{\Delta}, \phi_{\Delta}\right)$ for Au-Au collisions at $\sqrt{s_{N N}}=200$ and $62 \mathrm{GeV}$ (top and bottom rows, respectively). Centrality increases left to right from most peripheral to most central. Corrected total cross-section fractions are (left to right) $84 \%-93 \%, 55 \%-64 \%, 18 \%-28 \%,$ and $0 \%-5 \%$ for the $200-\mathrm{GeV}$ data and $84 \%-95 \%, 56 \%-65 \%$ $18 \%-28 \%,$ and $0 \%-5 \%$ for the $62 \mathrm{GeV}$ data (see Tables III and IV).
A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 56 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 84 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 120 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated. Note that these two systematic errors are different for the final point.
Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.
The double ratio R_double at 900 and 7000 GeV.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at 200 GeV by the STAR experiment. The acoplanarities in pp and d+Au indicate initial state kT broadening. Larger acoplanarity is observed in Au+Au collisions. The central Au+Au data show an additional effect signaling conical emission of correlated charged hadrons.
FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.
FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.
FIG. 1: (a) Raw two-particle correlation signal $Y_2$ (red), background $aB_{inc}F_2$ (solid histogram), and background systematic uncertainty from a (dashed histograms). (b) Background-subtracted two-particle correlation $\hat{Y}_2$ (red), and systematic uncertainties due to a (dashed histograms) and flow (blue histograms). (c) Raw three-particle correlation $Y_3$. (d) $ba^2Y_{inc}^2$ . (e) Sum of trig-corr-bkgd and trigger flow. Data are from 12% central Au+Au collisions. Statistical errors in (a,b) are smaller than the point size.
An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energy fraction, the observable with the smallest theoretical and experimental uncertainty, is $\alpha_s(M_Z^2) = 0.1180 \pm 0.0006 (exp.) \pm 0.0013 (hadr.) \pm 0.0008 (scale) \pm 0.0007 (mass)$. Further studies include an $\alpha_s$ determination using theoretical predictions in the next-to-leading log approximation (NLLA), matched NLLA and $\cal O(\alpha_s^2$) predictions as well as theoretically motivated optimized scale setting methods. The influence of higher order contributions was also investigated by using the method of Pad\'{e} approximants. Average $\alpha_s$ values derived from the different approaches are in good agreement.
The weighted value of ALPHA-S from all the measured observables using experimentally optimized renormalization scale values and corrected for the b-mass toleading order.
The value of ALPHA-S derived from the JCEF and corrected for heavy quark mass effects. The quoted errors are respectively due to experimental error, hadronization, renormalization scale and heavy quark mass correction uncertainties.
Energy Energy Correlation EEC.
Two particle correlations of hadrons produced in 360 GeV/cpp interactions are investigated in the transverse plane and in rapidity. The data were obtained at the European hybrid spectrometer equipped with a rapid cycling bubble chamber. The observed transverse and rapidity correlations are compared with the one string LUND-and a two string dual parton-model. These models predict in general stronger correlations in the transverse plane and much weaker correlations in rapidity than found in the data. The LUND-FRITIOF-and multichain dual parton models provide a better reproduction of the data, although the agreement is not yet satisfactory. Only the UA5 cluster model GENCL shows agreement with the data.
No description provided.