A measurement of the underlying activity in scattering processes with transverse momentum scale in the GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged hadron production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged hadrons with pseudorapidity eta < 2, p_T > 0.5 GeV/c, and azimuthal direction transverse to that of the leading object.
Average multiplicity of charged particles per unit of pseudorapidity as a function of pseudorapidity for events with leading track-jet transverse momenta > 1 and > 3 GeV. Statistical errors only.
Average scalar sum of the transverse momenta of charged particles per unit of pseusdorapidity and per radian as a function of DELTA(PHI) for events with leading track-jet transverse momenta > 1 and > 2 GeV. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.
The average multiplicity and average scalar sum of transverse momenta of charge particles per unit of pseudorapidity and per radian as a function of the leading track transverse momenta. Statistical errors only. Typical systematic error of 1.8 PCT at a leading track-jet PT of 3.5 GeV.
We present a measurement of pi^+pi^-pi^+pi^- photonuclear production in ultra-peripheral Au-Au collisions at sqrt(s_{NN}) = 200 GeV from the STAR experiment. The pi^+pi^-pi^+pi^- final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi^+pi^-pi^+pi^- invariant mass spectrum of the coherent events exhibits a broad peak around 1540 pm 40 MeV/c^2 with a width of 570 pm 60 MeV/c^2, in agreement with the photoproduction data for the rho^0(1700). We do not observe a corresponding peak in the pi^+pi^- final state and measure an upper limit for the ratio of the branching fractions of the rho^0(1700) to pi^+pi^- and pi^+pi^-pi^+pi^- of 2.5 % at 90 % confidence level. The ratio of rho^0(1700) and rho^0(770) coherent production cross sections is measured to be 13.4 pm 0.8 (stat.) pm 4.4 (syst.) %.
Distribution of the $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ transverse momentum $p_{T} = |\sum_{i=1}^{4}\overrightarrow{p}_{T,i}|$: The filled circles are the measured points with the statistical errors. The hatched filled histogram shows the expected distribution from simulation of coherent photoproduction (cf. section III). The strong enhancement at low transverse momenta is due to coherently produced $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$. This unique signature is used in the event selection which requires $p_{T}$ < 150 MeV/c (arrow). The remaining background is estimated from +2 or −2 charged four-prong combinations, by normalizing (factor = 1.186 $\pm$ 0.054) their $p_{T}$ distribution (gray filled histogram) to that of the neutral four-prongs in the region of $p_{T}$ > 250 MeV/c (vertical line) yielding the unfilled histogram (see section IV).
Invariant Mass distribution of two-pion subsystems: The filled circles show the measured $\pi^{+}\pi^{-}$ invariant mass spectrum for the selected four-prong sample (four entries per event) with statistical errors. The open circles represent the mass spectrum of the like-sign pion pairs (two entries per event). The unlike-sign mass distribution exhibits an enhancement with respect to the like-sign pairs in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).
Invariant Mass distribution of two-pion subsystems: The open circles show the measured invariant mass spectrum of the lightest $\pi^{+}\pi^{-}$ pair in the event with the bars indicating the statistical errors. The filled circles represent the invariant mass distribution of the $\pi^{+}\pi^{-}$ that is recoiling against the lightest pair. The spectrum exhibits a clear peak in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).
The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation \dphino, in d+Au and central Au+Au collisions at $\rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation \deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in \detano$\times$\dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in \dphi and \textcolor{black}{depends only weakly on} $\deta$, the 'ridge'. Using two systematically independent analyses, \textcolor{black}{finite ridge yield} is found to persist for trigger $\pt > 6$ \GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < \pt < 4 \GeVc$).
FIG. $2: \quad Y_{\text {slice }}(\Delta \eta ; \delta=0.3)$ (Eq. 5 ) for central Au+Au collisions, $2 \mathrm{GeV} / \mathrm{c}<p_{t}^{a s s o c}<p_{t}^{t r i g}$, and various $p_{t}^{t r i g}$ vs. $\Delta \eta$; the shaded bands represents the systematic uncertainties due to $v_{2}$ (not shown for $6<p_{t}^{\text {trig }}<10 \mathrm{GeV} / \mathrm{c}$ ). The solid and dashed lines represents a constant or linear fit to $1<|\Delta \eta|$ $<1.8$; only shown for $3<p_{t}^{t r i g}<4 \mathrm{GeV} / c$ (see text). Some data points are displaced horizontally for clarity.
FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.
FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.
The system created in non-central relativistic nucleus-nucleus collisions possesses large orbital angular momentum. Due to spin-orbit coupling, particles produced in such a system could become globally polarized along the direction of the system angular momentum. We present the results of Lambda and anti-Lambda hyperon global polarization measurements in Au+Au collisions at sqrt{s_NN}=62.4 GeV and 200 GeV performed with the STAR detector at RHIC. The observed global polarization of Lambda and anti-Lambda hyperons in the STAR acceptance is consistent with zero within the precision of the measurements. The obtained upper limit, |P_{Lambda,anti-Lambda}| <= 0.02, is compared to the theoretical values discussed recently in the literature.
(Color online) Invariant mass distribution for the $\Lambda$ (filled circles) and $\overline{\Lambda}$ (open squares) candidates after the quality cuts for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%).
(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ transverse momentum $p^{\Lambda}_{t}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%) and open squares indicate the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). Only statistical uncertainties are shown.
(Color online) Global polarization of $\Lambda$–hyperons as a function of $\Lambda$ pseudorapidity $\eta^{\Lambda}$. Filled circles show the results for Au+Au collisions at $\sqrt{s_{NN}}$=200 GeV (centrality region 20-70%). A constant line fit to these data points yields $P_{\Lambda}=(2.8\pm 9.6)\times 10^{-3}$ with $\chi^{2}/ndf=6.5/10$. Open squares show the results for Au+Au collisions at $\sqrt{s_{NN}}$=62.4 GeV (centrality region 0-80%). A constant line fit gives $P_{\Lambda}=(1.9\pm 8.0)\times 10^{-3}$ with $\chi^{2}/ndf=14.3/10$. Only statistical uncertainties are shown.
We present strange particle spectra and yields measured at mid-rapidity in $\sqrt{\text{s}}=200$ GeV proton-proton ($p+p$) collisions at RHIC. We find that the previously observed universal transverse mass ($\mathrm{m_{T}}\equiv\sqrt{\mathrm{p_{T}}^{2}+\mathrm{m}^{2}}$) scaling of hadron production in $p+p$ collisions seems to break down at higher \mt and that there is a difference in the shape of the \mt spectrum between baryons and mesons. We observe mid-rapidity anti-baryon to baryon ratios near unity for $\Lambda$ and $\Xi$ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum (\mpt) on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared to previous measurements from CERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next to Leading order (NLO) string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from $p+p$ collisions at RHIC energies have large contributions from gluon jets rather than quark jets.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
Corrected mid-rapidity (|y| < 0.5) pT spectra for $K^{+}$, $K^{−}$, $K^{0}_{S}$, Λ, Ξ, and Ω. Λ spectra that have been corrected for feed-down are shown as open symbols in the Λ panel. The dashed lines are fits using Equation 11 except for the $\Omega+\overline{\Omega}$ where the fit uses Equation 9. The error bars displayed include systematic errors while the fits were done using statistical errors only for all species except the charged kaons.
We report measurements of transverse momentum $p_t$ spectra for ten event multiplicity classes of p-p collisions at $\sqrt{s} = 200$ GeV. By analyzing the multiplicity dependence we find that the spectrum shape can be decomposed into a part with amplitude proportional to multiplicity and described by a L\'evy distribution on transverse mass $m_t$, and a part with amplitude proportional to multiplicity squared and described by a gaussian distribution on transverse rapidity $y_t$. The functional forms of the two parts are nearly independent of event multiplicity. The two parts can be identified with the soft and hard components of a two-component model of p-p collisions. This analysis then provides the first isolation of the hard component of the $p_t$ spectrum as a distribution of simple form on $y_t$.
FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.
FIG. 1: Corrected and normalized charged-particle spectra on transverse momentum $p_t$ (left) and transverse rapidity $y_t$ (right) for 10 event multiplicity classes, displaced upward by successive factors 40 relative to $\hat{n}_{ch}$ = 1 at bottom. Solid curves represent reference function $n_s/n_{ch} · S_0(y_t)$ (cf.Sec. IV C). Dotted curves are spline fits to guide the eye.
FIG. 2. Left: Relative residuals from power-law fits to $p_{t}$ spectra in Fig. 1. The hatched band represents the expected statistical errors for STAR data. Right: Exponents $n$ from power-law fits to data (solid points) and to corresponding twocomponent fixed-model functions (open circles, see Sec. VI) compared to the two-component fixed-model Lévy exponent $12.8 \pm 0.15$ (hatched band). NOTE 1: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty. NOTE 2: The "data_stat" uncertainty corresponds to the expected statistical error (hatched band).
We present the scaling properties of Lambda, Xi, Omega and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at sqrt(s_NN) = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma_s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, R_CP, of Lambda and Xi are consistent with each other and with that of protons in the transverse momentum range 2.0 < p_T < 5.0 GeV/c. This scaling behaviour is consistent with a scenario of hadron formation from constituent quark degrees of freedom through quark recombination or coalescence.
Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.
Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.
Transverse momentum distributions of (a) $\Lambda(\overline{\Lambda})$ for $|y|<1.0$, (b) $\Xi^{-}(\overline{\Xi}^{+})$ for $|y|<0.75$ and (c) $\Omega^{-}+\overline{\Omega}^{+}$ for $|y|<0.75$ in Au+Au collisions at $\sqrt{s_{NN}}$ as a function of centrality. The $\Lambda$ spectra were corrected for weak decay of $\Xi$, $\Xi^{0}$ and $\Omega$. Scale factors were applied to the spectra for clarity. Only statistical errors are shown. The dashed curves show a Boltzmann fit to the $\Lambda$, $\Xi^{-}$ and $\Omega^{-}+\overline{\Omega}^{+}$ data, the fits to the $\overline{\Lambda}$ and $\overline{\Xi}^{+}$ are omitted for clarity.
We present the first data on $e^+e^-$ pair production accompanied by nuclear breakup in ultra-peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order corrections to the pair production cross section should be enhanced. We compare the pair kinematic distributions with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED): the latter includes the photon virtuality. The cross section, pair mass, rapidity and angular distributions are in good agreement with both calculations. The pair transverse momentum, $p_T$, spectrum agrees with the QED calculation, but not with the equivalent photon approach. We set limits on higher-order contributions to the cross section. The $e^+$ and $e^-$ $p_T$ spectra are similar, with no evidence for interference effects due to higher-order diagrams.
(a) The pair mass distribution, (b) pair $p){T}$ , (c) pair rapidity and (d) pair cos($\theta′$) distributions. The data (points) are compared with predictions from the EPA (solid histogram) and lowest-order QED (dashed histogram) calculations. The error bars include both statistical and systematic errors.
(a) The pair mass distribution, (b) pair $p){T}$ , (c) pair rapidity and (d) pair cos($\theta′$) distributions. The data (points) are compared with predictions from the EPA (solid histogram) and lowest-order QED (dashed histogram) calculations. The error bars include both statistical and systematic errors.
(a) The pair mass distribution, (b) pair $p){T}$ , (c) pair rapidity and (d) pair cos($\theta′$) distributions. The data (points) are compared with predictions from the EPA (solid histogram) and lowest-order QED (dashed histogram) calculations. The error bars include both statistical and systematic errors.
J/psi production has been measured in proton-proton collisions at sqrt(s)= 200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at RHIC. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 3.99 +/- 0.61(stat) +/- 0.58(sys) +/- 0.40(abs) micro barns. The mean transverse momentum is 1.80 +/- 0.23(stat) +/- 0.16(sys) GeV/c.
Measured J/PSI distribution in PT for the e+e- channel. The value of B, the branching fraction to either electrons or muons is the average value from PDG : 5.9%.The rapidity range is -0.35<y<0.35. Incertainties are 1-sigma statistical errors on the (signal - background) net yield. There is a 10% overall absolute cross section normalization error in addition to the error given.
Measured J/PSI distribution in PT for the mu+mu- channel. The value of B, the branching fraction to either electrons or muons, is the average value from PDG: 5.9%.The rapidity range is -2.2<y<-1.2. Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
J/PSI distribution in rapidity. The data at rapidity = 0 is from the electron arm, the data from the muon arm, corresponding to forward rapidity is divided in two bins.The value of B,the branching fraction to either electrons or muons, is 5.9%, the average value from PDG.Incertainties are 1-sigma statistical errors on the (signal - background) net yield.There is a 10% overall absolute cross section normalization error in addition to the error given.
Azimuthal anisotropy ($v_2$) and two-particle angular correlations of high $p_T$ charged hadrons have been measured in Au+Au collisions at $\sqrt{s_{NN}}$=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high $p_T$ partons. The monotonic rise of $v_2(p_T)$ for $p_T<2$ GeV/c is consistent with collective hydrodynamical flow calculations. At $\pT>3$ GeV/c a saturation of $v_2$ is observed which persists up to $p_T=6$ GeV/c.
$v_{2}$($p_{T}$) for different collision centralities. The errors are statistical only. The systematic uncertainties, which are highly correlated point-to-point, are $^{+5}_{-20}%$.
$v_{2}$($p_{T}$) for minimum-bias events (circles). The error bars represent the statistical errors and the caps show the systematic uncertainty. The data are compared with hydro+pQCD calculations [9] assuming the initial gluon density $dN^{g}/dy$ = 1000 (dashed line), 500 (dotted line), and 200 (dashed-dotted line). Also shown are pure hydrodynamical calculations [16] (solid line).
High $p_{T}$ azimuthal correlation functions for central events. Upper panel: Correlation function for $|\Delta\eta|$ < 0.5 (solid circles) and scaled correlation function for 0.5 < $|\Delta\eta|$ < 1.4 (open squares). Lower panel: Difference of the two correlation functions. Also shown are the fits to the data (described in the text).