From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.
No description provided.
Results are presented on the reaction K − p → K̄ o n for momenta above 20 GeV/ c . Events were identified by precise measurement of the opening angle in the decay K o → π + π − without using a magnetic field. The cross-section is described by a power energy dependence.
No description provided.
None
No description provided.
None
No description provided.
Data on the inclusive production spectra of K S 0 and Λ from proton-proton collisions at 19 GeV are presented and discussed in connection with the earlier studied inclusive π − production spectrum. The three single-particle spectra are compared with a crude two-center thermal model for the average radiation from the pp collisions.
No description provided.
None
FORWARD AMPLITUDE DEDUCED FROM D(SIG)/DOMEGA IN COULOMB-NUCLEAR INTERFERENCE REGION.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.
MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.
Differential cross sections for charge exchange π − p → π 0 n have been measured for momenta up to 50 GeV/ c . The cross section falls as a power of energy. The forward scattering cone shrinks with increasing energy. The cross section for charge exchange at zero angle drops with momentum as P −0.81±0.05 . The charge exchange cross section in the region of the second maximum decrease as P −2.8±0.1 . The ϱ trajectory is described by a linear function α ( t ) = 0.56 + 0.97 t in the interval 0 < − t -<1.5 (GeV/ c ) 2 .
No description provided.
No description provided.