The production of prompt charged particles in proton-lead collisions and in proton-proton collisions at the nucleon-nucleon centre-of-mass energy ${\sqrt{s_{\scriptscriptstyle\mathrm{NN}}}=5\,\mathrm{TeV}}$ is studied at LHCb as a function of pseudorapidity ($\eta$) and transverse momentum ($p_{\mathrm{T}}$) with respect to the proton beam direction. The nuclear modification factor for charged particles is determined as a function of $\eta$ between ${-4.8<\eta<-2.5}$ (backward region) and ${2.0<\eta<4.8}$ (forward region), and $p_{\mathrm{T}}$ between ${0.2<p_{\mathrm{T}}<8.0\,\mathrm{GeV}/c}$. The results show a suppression of charged particle production in proton-lead collisions relative to proton-proton collisions in the forward region and an enhancement in the backward region for $p_{\mathrm{T}}$ larger than $1.5\,\mathrm{GeV}/c$. This measurement constrains nuclear PDFs and saturation models at previously unexplored values of the parton momentum fraction down to $10^{-6}$.
Double-differential production cross-section for prompt charged particles in pp collisions at 5TeV with respect to pseudorapidity and transverse momentum. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the forward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
Double-differential production cross-section for prompt charged particles in pPb collisions at 5TeV with respect to pseudorapidity and transverse momentum in the backward region. The pseudorapidity is expressed in the nucleon-nucleon center-of-mass system. First uncertainty is statistical, the second is systematic and the third is from the luminosity. Luminosity uncertainty is fully correlated among the different kinematic ranges.
The production cross sections of the prompt charmed mesons D$^0$, D$^+$, D$^{*+}$ and D$_s$ were measured at mid-rapidity in p-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}}=5.02$ TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D$^0\rightarrow{\rm K}^-\pi^+$, D$^+\rightarrow{\rm K}^-\pi^+\pi^+$, D$^{*+}\rightarrow D^0\pi^+$, D$_s^+\rightarrow\phi\pi^+\rightarrow{\rm K}^-{\rm K}^+\pi^+$, and their charge conjugates. The $p_{\rm T}$-differential production cross sections were measured at mid-rapidity in the interval $1<p_{\rm T}<24$ GeV/$c$ for D$^0$, D$^+$ and D$^{*+}$ mesons and in $2<p_{\rm T}<12$ GeV/$c$ for D$_s$ mesons, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. The production cross sections of the D$^0$, D$^+$ and D$^{*+}$ mesons were also measured in three $p_{\rm T}$ intervals as a function of the rapidity $y_{\rm cms}$ in the centre-of-mass system in $-1.26<y_{\rm cms}<0.34$. In addition, the prompt D$^0$ cross section was measured in pp collisions at $\sqrt{s}=7$ TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV down to $p_{\rm T}=0$ using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D$^0$ decay vertex. The nuclear modification factor $R_{\rm pPb}(p_{\rm T})$, defined as the ratio of the $p_{\rm T}$-differential D-meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within experimental uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium.
pT-differential cross section of inclusive Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388.
pT-differential cross section of prompt Dzero mesons in pp collisions at sqrt{sNN}=7 TeV in the rapidity interval |y|<0.5. Branching ratio of D0->Kpi : 0.0388. Data points for pt<2 GeV/c from analysis "without vertexing". Data points for pt>2 GeV/c from the analysis "with vertexing" taken from JHEP 1201 (2012) 128 (http://hepdata.cedar.ac.uk/view/ins944757) and corrected for the updated BR value.
First column: production cross sections per unit of rapidity for prompt D0 mesons, inclusive D0 mesons (no feed-down subtraction) and charm quarks at mid-rapidity in pp collisions at 7 TeV. For D0 mesons, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the luminosity uncertainty, the third (sys) error is from the Fragmentation Function uncertainties, the fourth (sys) error is from the rapidity shapes of D0 mesons and single charm quarks. Second column: total production cross sections, extrapolated to the full phase space, for prompt D0 mesons and charm quarks. For D0 mesons, the second (sys) error is the from the extrapolation uncertainty, the third from the luminosity uncertainty and the fourth from the branching-ratio uncertainties. For charm quarks, the second (sys) error is from the extrapolation, the third is from the luminosity uncertainty and the fourth is from the Fragmentation Function uncertainties. Third column: value of <pT> of prompt D0 mesons. The first uncertainty is statistical, the second is the systematic uncertainty.
The production rates of prompt and non-prompt $J/\psi$ and $\psi(2\mathrm{S})$ mesons are measured using 2.1 $fb^{-1}$ and 11.4 $fb^{-1}$ of data collected with the ATLAS experiment at the LHC, in proton-proton collisions at $\sqrt{s}=7$ and 8 TeV respectively. Production cross-sections for both prompt and non-prompt production sources, ratios of $\psi(2\mathrm{S})$ to $J/\psi$ production, and fractions of non-prompt to inclusive production for $J/\psi$ and $\psi(2\mathrm{S})$ are measured double-differentially as a function of meson $p_{T}$ and rapidity. These measurements are made in a restricted fiducial volume and also corrected for geometrical acceptance after which they are compared to a variety of theoretical predictions.
Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of prompt $J/\psi$ decaying to a muon pair for 8 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.
Summary of results for cross-section of non-prompt $J/\psi$ decaying to a muon pair for 7 TeV data in nb/GeV. Uncertainties are statistical and systematic, respectively.
We report on the inclusive production cross sections of J/$\psi$, $\psi$(2S), $\Upsilon$(1S), $\Upsilon$(2S) and $\Upsilon$(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy $\sqrt{s}=8$ TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.28 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the $p_{\rm T}$ ranges $0<p_{\rm T}<20$ GeV/$c$ for J/$\psi$, $0<p_{\rm T}<12$ GeV/$c$ for all other resonances, and for $2.5<y<4$. The cross sections, integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are $\sigma_{{\rm J}/\psi} = 8.98\pm0.04\pm0.82$ $\mu$b, $\sigma_{\psi{\rm (2S)}} = 1.23\pm0.08\pm0.22$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 71\pm6\pm7$ nb, $\sigma_{\Upsilon{\rm(2S)}} = 26\pm5\pm4$ nb and $\sigma_{\Upsilon{\rm(3S)}} = 9\pm4\pm1$ nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most $1.4\sigma$, with measurements performed by the LHCb collaboration in the same rapidity range.
Differential production cross sections of J/$\psi$ as a function of $p_{\rm T}$.
Differential production cross sections of J/$\psi$ as a function of rapidity.
integrated production cross section of J/$\psi$.
Measurements of differential cross-sections for $J/\psi$ production in p+Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV at the LHC with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb$^{-1}$. The $J/\psi$ mesons are reconstructed in the dimuon decay channel over the transverse momentum range $8<p_{\mathrm{T}}<30$ GeV and over the center-of-mass rapidity range $-2.87<y^{*}<1.94$. Prompt $J/\psi$ are separated from $J/\psi$ resulting from $b$-hadron decays through an analysis of the distance between the $J/\psi$ decay vertex and the event primary vertex. The differential cross-section for production of nonprompt $J/\psi$ is compared to a FONLL calculation that does not include nuclear effects. Forward-backward production ratios are presented and compared to theoretical predictions. These results constrain the kinematic dependence of nuclear modifications of charmonium and $b$-quark production in p+Pb collisions.
Measured non-prompt fraction.
Measured non-prompt fraction.
Measured prompt J/psi differential cross-section multiplied by branching ratio. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity.
We have studied the transverse-momentum ($p_{\rm T}$) dependence of the inclusive J/$\psi$ production in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, in three center-of-mass rapidity ($y_{\rm cms}$) regions, down to zero $p_{\rm T}$. Results in the forward and backward rapidity ranges ($2.03 < y_{\rm cms} < 3.53$ and $-4.46 <y_{\rm cms}< -2.96$) are obtained by studying the J/$\psi$ decay to $\mu^+\mu^-$, while the mid-rapidity region ($-1.37 < y_{\rm cms} < 0.43$) is investigated by measuring the ${\rm e}^+{\rm e}^-$ decay channel. The $p_{\rm T}$ dependence of the J/$\psi$ production cross section and nuclear modification factor are presented for each of the rapidity intervals, as well as the J/$\psi$ mean $p_{\rm T}$ values. Forward and mid-rapidity results show a suppression of the J/$\psi$ yield, with respect to pp collisions, which decreases with increasing $p_{\rm T}$. At backward rapidity no significant J/$\psi$ suppression is observed. Theoretical models including a combination of cold nuclear matter effects such as shadowing and partonic energy loss, are in fair agreement with the data, except at forward rapidity and low transverse momentum. The implications of the p-Pb results for the evaluation of cold nuclear matter effects on J/$\psi$ production in Pb-Pb collisions are also discussed.
$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the backward rapidity range (-4.46<$y_{\rm cms}$<-2.96). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.
$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the mid-rapidity range (-1.37<$y_{\rm cms}$<0.43). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.
$p_{\rm T}$-differential inclusive cross section ${\rm d}^2\sigma^{J/\psi}/{\rm d}y{\rm d}p_{T}$ in the forward rapidity range (2.03<$y_{\rm cms}$<3.53). The first uncertainty is statistical, the second one is the $p_{\rm T}$-uncorrelated systematic uncertainty, while the third is the $p_{\rm T}$-correlated one.
Measurements of the differential and double-differential Drell-Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton-proton collision data at sqrt(s) = 8 TeV recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measured inclusive cross section in the Z peak region (60-120 GeV), obtained from the combination of the dielectron and dimuon channels, is 1138 +/- 8 (exp) +/- 25 (theo) +/- 30 (lumi) pb, where the statistical uncertainty is negligible. The differential cross section d(sigma)/d(m) in the dilepton mass range 15 to 2000 GeV is measured and corrected to the full phase space. The double-differential cross section d2(sigma)/d(m)d(abs(y)) is also measured over the mass range 20 to 1500 GeV and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at sqrt(s) = 7 and 8 TeV are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with FEWZ 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.
Absolute Drell-Yan cross section measurements in the Z peak region (60 < m < 120 GeV). The uncertainties in the measurements include the experimental and theoretical systematic sources and the uncertainty in the integrated luminosity. The statistical component is negligible.
The Drell-Yan differential pre-FSR cross section D(SIG)/DM as measured in the combined dilepton channel for the full phase space. Theoretical uncertainty on acceptance is included.
The Drell-Yan pre-FSR dilepton rapidity distribution D(SIG)/DABS(YRAP) within the detector acceptance, for the mass bin 20-30 GeV, as measured in the combined dilepton channel.
Measurements of inclusive jet production are performed in $pp$ and Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 $\mathrm{pb}^{-1}$ and 0.14 $\mathrm{nb}^{-1}$, respectively. The jets are identified with the anti-$k_t$ algorithm with $R=0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_{\mathrm{T}} < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, $R_{\mathrm{AA}}$, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to $pp$ collisions. The $R_{\mathrm{AA}}$ shows a slight increase with $p_{\mathrm{T}}$ and no significant variation with rapidity.
The $\langle T_{\mathrm{AA}} \rangle $ and $\langle N_{\mathrm{part}} \rangle$ values and their uncertainties in each centrality bin.
No description provided.
No description provided.
Double-differential three-jet production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV using the ATLAS detector at the Large Hadron Collider. The measurements are presented as a function of the three-jet mass $(m_{jjj})$, in bins of the sum of the absolute rapidity separations between the three leading jets $(|Y^\ast|)$. Invariant masses extending up to 5 TeV are reached for $8< |Y^\ast| < 10$. These measurements use a sample of data recorded using the ATLAS detector in 2011, which corresponds to an integrated luminosity of 4.51 fb$^{-1}$. Jets are identified using the anti-$k_t$ algorithm with two different jet radius parameters, R=0.4 and R=0.6. The dominant uncertainty in these measurements comes from the jet energy scale. Next-to-leading-order QCD calculations corrected to account for non-perturbative effects are compared to the measurements. Good agreement is found between the data and the theoretical predictions based on most of the available sets of parton distribution functions, over the full kinematic range, covering almost seven orders of magnitude in the measured cross-section values.
Measured three-jet double-differential cross sections as a function of M(3JET) in |Y*|<2 for anti-kt R=0.4 jets. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.
Measured three-jet double-differential cross sections as a function of M(3JET) in 2<=|Y*|<4 for anti-kt R=0.4 jets. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.
Measured three-jet double-differential cross sections as a function of M(3JET) in 4<=|Y*|<6 for anti-kt R=0.4 jets. The three columns correspond to nominal, stronger or weaker correlations between jet energy scale uncertainty components.
The inclusive jet cross-section is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using a data set corresponding to an integrated luminosity of 4.5 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider in 2011. Jets are identified using the anti-$k_t$ algorithm with radius parameter values of 0.4 and 0.6. The double-differential cross-sections are presented as a function of the jet transverse momentum and the jet rapidity, covering jet transverse momenta from 100 GeV to 2 TeV. Next-to-leading-order QCD calculations corrected for non-perturbative effects and electroweak effects, as well as Monte Carlo simulations with next-to-leading-order matrix elements interfaced to parton showering, are compared to the measured cross-sections. A quantitative comparison of the measured cross-sections to the QCD calculations using several sets of parton distribution functions is performed.
Measured double-differential inclusive-jet cross section for the range 0.0 <= |y| < 0.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.
Measured double-differential inclusive-jet cross section for the range 0.5 <= |y| < 1.0 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.
Measured double-differential inclusive-jet cross section for the range 1.0 <= |y| < 1.5 and for anti-kT jets with radius parameter R = 0.4. It is based on the data sample of proton-proton collisions at 7 TeV of centre-of-mass energy collected in 2011 by the ATLAS experiment at the LHC. The data sample corresponds to the integrated luminosity of 4.5 fb^-1. The statistical uncertainties arising from data and MC simulation have been combined. All the components of the systematic uncertainty are shown. They are: all the components of the jet energy scale uncertainty (jesX), the uncertainty of the jet energy resolution (jer), the uncertainty of the jet angular resolution (jar), the uncertainty of data unfolding (unfold), the uncertainty of the jet quality selection (qual), the luminosity uncertainty (lumi). All the components are assumed to be independent of each other. Each component is assumed to be fully correlated in pT and eta. Concerning the shape of the different components, Gaussian distribution assumption works for most of them. The three columns correspond to three different sets of the systematic uncertainty built with nominal, stronger or weaker assumptions on correlations between the jet energy scale uncertainty components. For more information on the systematic uncertainties, see the reference paper.