The central inclusive jet cross section has been measured using a successive-combination algorithm for reconstruction of jets. The measurement uses 87.3 pb^{-1} of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider during 1994-1995. The cross section, reported as a function of transverse momentum (pT>60 GeV) in the central region of pseudorapidity (|\eta|<0.5), exhibits reasonable agreement with next-to-leading order QCD predictions, except at low pT where the agreement is marginal.
The inclusive jet cross section as a function of PT.
The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at $\sqrt{s} = 630$ GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy ($E_T$) range from 7-49 GeV and have pseudorapidity $|\eta| < 2.5$. This measurement is combined with to previous \D0 result at $\sqrt{s} = 1800$ GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the $E_T$ range.
No description provided.
No description provided.
No description provided.
We report a new measurement of the pseudorapidity (eta) and transverse-energy (Et) dependence of the inclusive jet production cross section in pbar b collisions at sqrt(s) = 1.8 TeV using 95 pb**-1 of data collected with the DZero detector at the Fermilab Tevatron. The differential cross section d^2sigma/dEt deta is presented up to |eta| = 3, significantly extending previous measurements. The results are in good overall agreement with next-to-leading order predictions from QCD and indicate a preference for certain parton distribution functions.
Single Inclusive Jet Production Cross Section.
Single Inclusive Jet Production Cross Section.
Single Inclusive Jet Production Cross Section.
Inclusive coherent proton diffraction dissociation on helium has been measured in the four-momentum transfer and missing-mass region 0.04<|t|<0.40 (GeV/c)2, MX2<10 GeV2 and for incident proton beam momenta from 46 to 400 GeV/c. We find that the differential cross section d2σdtdMX2 varies slowly with energy, reveals a pronounced peak at MX2≃2 GeV2, and at large masses behaves approximately as 1MX2. The cross section falls exponentially as |t| increases, with a large slope parameter at small momentum transfers and a substantially smaller one at large |t| values, with no clear dip between the two regions as seen in elastic scattering. We compare the experimental t distributions to Glauber-model predictions and find the data provide a sensitive test of the assumptions on the details of the elementary proton diffraction-dissociation amplitudes and on the total cross sections of the diffractively produced states.
No description provided.
No description provided.
AVERAGED DATA FOR 200 AND 259 GEV.