Date

Measurement of inclusive jet cross section and substructure in $p$+$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Abdulameer, N.J. ; Acharya, U. ; Aidala, C. ; et al.
Phys.Rev.D 111 (2025) 112008, 2025.
Inspire Record 2820229 DOI 10.17182/hepdata.158374

The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.

8 data tables

The jet differential cross section as a function of jet $p_T$. Statistical uncertainties are typically smaller than the data points while systematic uncertainties are shown with boxes. An overall normalization systematic of 7% is not included in the point-by-point systematic uncertainties.

Distribution of the SoftDrop groomed momentum fraction $z_g$ for different jet $p_T$ bins. Standard SoftDrop parameters were used ($z_{cut}<0.1$ and $\beta=0$).

$\xi$ distributions for different jet $p_T$ bins.

More…

New constraints on cosmic ray-boosted dark matter from the LUX-ZEPLIN experiment

The LZ collaboration Aalbers, J. ; Akerib, D.S. ; Al Musalhi, A.K. ; et al.
Phys.Rev.Lett. 134 (2025) 241801, 2025.
Inspire Record 2903333 DOI 10.17182/hepdata.157863

While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.

1 data table

90% CL CRDM-nucleon cross sections


Observation of a Three-Resonance Structure in the Cross Section of $e^+e^-\to\pi^+\pi^- h_c$

The BESIII collaboration Ablikim, Medina ; Achasov, Mikhail N. ; Adlarson, Patrik Adlarsson ; et al.
2025.
Inspire Record 2908630 DOI 10.17182/hepdata.160247

Using $e^+e^-$ collision data collected with the BESIII detector operating at the Beijing Electron Positron Collider, the cross section of $e^+e^-\to \pi^+\pi^- h_c$ is measured at 59 points with center-of-mass energy $\sqrt{s}$ ranging from $4.009$ to $4.950~\mathrm{GeV}$ with a total integrated luminosity of $22.2~\mathrm{fb}^{-1}$. The cross section between $4.3$ and $4.45~\mathrm{GeV}$ exhibits a plateau-like shape and drops sharply around $4.5~\mathrm{GeV}$, which cannot be described by two resonances only. Three coherent Breit-Wigner functions are used to parameterize the $\sqrt{s}$-dependent cross section line shape. The masses and widths are determined to be $M_1=(4223.6_{-3.7-2.9}^{+3.6+2.6})~\mathrm{MeV}/c^2$, $\Gamma_1=(58.5_{-11.4-6.5}^{+10.8+6.7})~\mathrm{MeV}$, $M_2=(4327.4_{-18.8-9.3}^{+20.1+10.7})~\mathrm{MeV}/c^2$, $\Gamma_2=(244.1_{-27.1-18.0}^{+34.0+23.9})~\mathrm{MeV}$, and $M_3=(4467.4_{-5.4-2.7}^{+7.2+3.2})~\mathrm{MeV}/c^2$, $\Gamma_3=(62.8_{-14.4-6.6}^{+19.2+9.8})~\mathrm{MeV}$. The first uncertainties are statistical and the other two are systematic. The statistical significance of the three Breit-Wigner assumption over the two Breit-Wigner assumption is greater than $5\sigma$.

3 data tables

Dressed cross section at the 19 XYZ-I energy points with large statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.

Dressed cross section at the 25 XYZ-II energy points with lower statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.

Dressed cross section and its upper limit at the 15 R-scan energy points with small statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.


Measurement of charged hadron multiplicity in Au+Au collisions at $\sqrt{\text{s}_{\text{NN}}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
2025.
Inspire Record 2907537 DOI 10.17182/hepdata.159879

The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.

2 data tables

Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.

Nch as a function of $\eta$, presented in Figure 5.


Measurement of the transverse energy density in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
2025.
Inspire Record 2907573 DOI 10.17182/hepdata.159889

This paper reports measurements of the transverse energy per unit pseudorapidity ($dE_{T}/d\eta$) produced in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, performed with the sPHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The results cover the pseudorapidity range $\left|\eta\right| < 1.1$ and constitute the first such measurement performed using a hadronic calorimeter at RHIC. Measurements of $dE_{T}/d\eta$ are presented for a range of centrality intervals and the average $dE_{T}/d\eta$ as a function of the number of participating nucleons, $N_{\mathrm{part}}$, is compared to a variety of Monte Carlo heavy-ion event generators. The results are in agreement with previous measurements at RHIC, and feature an improved granularity in $\eta$ and improved precision in low-$N_{\mathrm{part}}$ events.

10 data tables

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using Run 2024 Au+Au data. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using a GEANT-4 simulation of HIJING events. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of the measured energy distribution in a single OHCal tower, showing the MIP distribution from cosmic-ray data from the detector.

More…

Measurement of Spin-Density Matrix Elements in $ϕ(1020)\to K_S^0K_L^0$ Photoproduction with a Linearly Polarized Photon Beam at $E_γ=8.2-8.8$ GeV

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
2025.
Inspire Record 2907183 DOI 10.17182/hepdata.160000

We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.

1 data table

Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.


Observation of a pseudoscalar excess at the top quark pair production threshold

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-24-007, 2025.
Inspire Record 2905701 DOI 10.17182/hepdata.156815

A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the \ttbar system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8$^{+1.2}_{-1.4}$ pb.

2 data tables

Observed cross section of $\eta_t$

Observed values of twice the negative log-likelihood with respect to the best-fit point (2dNLL) as a function of the cross sections of $\eta_t$ and $\chi_t$.


Observation of WZ$\gamma$ production and constraints on new physics scenarios in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, V. ; Hayrapetyan, A. ; Makarenko, V. ; et al.
Phys.Rev.D 112 (2025) 012009, 2025.
Inspire Record 2905870 DOI 10.17182/hepdata.157601

A measurement of the WZ$γ$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pmν\ell^+\ell^-$, where $\ell$ = e or $μ$, accompanied by an additional photon. The observed (expected) significance of the WZ$γ$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region, where events with an $\ell$ originating from a tau lepton decay are excluded, to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.

6 data tables

The distributions of the variables used in the simultaneous fit for the nonprompt $l$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.

The distributions of the variables used in the simultaneous fit for the nonprompt $\gamma$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.

The distributions of the variables used in the simultaneous fit for the ZZ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.

More…

Inclusive Search for Anomalous Single-Photon Production in MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Aldana, D. Andrade ; Arellano, L. ; et al.
FERMILAB-PUB-25-0055-PPD, 2025.
Inspire Record 2878293 DOI 10.17182/hepdata.158440

We present an inclusive search for anomalous production of single-photon events from neutrino interactions in the MicroBooNE experiment. The search and its signal definition are motivated by the previous observation of a low-energy excess of electromagnetic shower events from the MiniBooNE experiment. We use the Wire-Cell reconstruction framework to select a sample of inclusive single-photon final-state interactions with a final efficiency and purity of 7.0% and 40.2%, respectively. We leverage simultaneous measurements of sidebands of charged current $\nu_{\mu}$ interactions and neutral current interactions producing $\pi^{0}$ mesons to constrain signal and background predictions and reduce uncertainties. We perform a blind analysis using a dataset collected from February 2016 to July 2018, corresponding to an exposure of $6.34\times10^{20}$ protons on target from the Booster Neutrino Beam (BNB) at Fermilab. In the full signal region, we observe agreement between the data and the prediction, with a goodness-of-fit $p$-value of 0.11. We then isolate a sub-sample of these events containing no visible protons, and observe $93\pm22\text{(stat.)}\pm35\text{(syst.)}$ data events above prediction, corresponding to just above $2\sigma$ local significance, concentrated at shower energies below 600 MeV.

19 data tables

Fig. 2. The reconstructed shower energy. The individual signal and background event type categories added together form the unconstrained prediction.

Fig. 2. The constrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.

Fig. 2, Suppl. Fig. 5. The unconstrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.

More…

Enhanced Search for Neutral Current $\Delta$ Radiative Single-Photon Production in MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Aldana, D. Andrade ; Arellano, L. ; et al.
FERMILAB-PUB-25-0054-PPD, 2025.
Inspire Record 2878288 DOI 10.17182/hepdata.158441

We report results from an updated search for neutral current (NC) resonant $\Delta$(1232) baryon production and subsequent $\Delta$ radiative decay (NC $\Delta\rightarrow N \gamma$). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a $\Delta(1232)$ baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC $\Delta\rightarrow N \gamma$ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC $\Delta\rightarrow N \gamma$ events with and without final state protons, and allow independent scaling of both types of events, our data exclude explanations in which excess events have associated protons, and do not exclude explanations in which excess events have no associated protons.

15 data tables

The four bins correspond to WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ predictions. Systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Constrained Signal Channels Covariance Matrix and Signal And Constraining Channels Covariance Matrix tabs. This corresponds to Fig. 1 and Table III of the paper.

Covariance matrix showing constrained uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Pearson data statistical uncertainties have been included, and include small correlations due to events which can be selected by both WC and Pandora. The four bins are the WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ channels. This corresponds to Fig. 1 and Table II of the paper.

Four constraining channels. The four channels in order are NC $\pi^0 Np$, NC $\pi^0 0p$, $\nu_\mu$CC $Np$, and $\nu_\mu$CC $0p$. Each channel contains 15 bins from 0 to 1500 MeV of reconstructed neutrino energy, with an additional overflow bin. Unconstrained and constrained systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Signal And Constraining Channels Covariance Matrix tab. This corresponds to Fig. 6 of the Supplemental Material.

More…