A new high precision measurement of the reaction pp -> pK+Lambda at a beam momentum of 2.95 GeV/c with more than 200,000 analyzed events allows a detailed analysis of differential observables and their inter-dependencies. Correlations of the angular distributions with momenta are examined. The invariant mass distributions are compared for different regions in the Dalitz plots. The cusp structure at the N Sigma threshold is described with the Flatt\'e formalism and its variation in the Dalitz plot is analyzed.
No description provided.
No description provided.
No description provided.
The cross section of the diffractive process e^+p -> e^+Xp is measured at a centre-of-mass energy of 318 GeV, where the system X contains at least two jets and the leading final state proton p is detected in the H1 Very Forward Proton Spectrometer. The measurement is performed in photoproduction with photon virtualities Q^2 <2 GeV^2 and in deep-inelastic scattering with 4 GeV^2<Q^2<80 GeV^2. The results are compared to next-to-leading order QCD calculations based on diffractive parton distribution functions as extracted from measurements of inclusive cross sections in diffractive deep-inelastic scattering.
Integrated $e^{+}p$ diffractive dijet cross sections in $\gamma p$. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation is also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Integrated $e^{+}p$ diffractive dijet cross sections in DIS. The hadronisation correction factor ($1+\delta_{\text{hadr}}$) applied to the NLO calculation and the radiative correction ($1+\delta_{\text{rad}}$) are also listed. The overall normalisation uncertainty of $6\%$ is not included in the table.
Ratio of integrated $e^{+}p$ diffractive dijet cross sections for $Q^2<2\,\text{GeV}^2$ (photoproduction) to $Q^2>4\,\text{GeV}^2$ (DIS).
The production of top quark-antiquark pair events in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV is studied as a function of the transverse momentum and absolute value of the rapidity of the top quarks as well as of the invariant mass of the $t\bar{t}$ pair. We select events containing an isolated lepton, a large imbalance in transverse momentum, and four or more jets with at least one jet identified to originate from a $b$ quark. The data sample corresponds to 9.7 fb$^{-1}$ of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Observed differential cross sections are consistent with standard model predictions.
The inclusive TOP TOPBAR production cross section.
The differential cross section as a function of the invariant mass of the top quark-antiquark pair, M(TOP + TOPBAR).
The differential cross section as a function of the absolute rapidity of the top quark/antiquark, ABS(YRAP(TOP/TOPBAR)).
We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of leading jet rapidity for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of second jet rapidity for events with two or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of third jet rapidity for events with three or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
The reaction gamma + p -> K+ + Sigma + pi was used to determine the invariant mass distributions or "line shapes" of the Sigma+ pi-, Sigma- pi+ and Sigma0 pi0 final states, from threshold at 1328 MeV/c^2 through the mass range of the Lambda(1405) and the Lambda(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 \Lambda(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the Sigma0(1385) and from K^* Sigma production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the NKbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J^P = 1/2^- amplitude with a centroid at 1394\pm20 MeV/c^2 and a second I=1 amplitude at 1413\pm10 MeV/c^2. The centroid of the I=0 Lambda(1405) strength was found at the Sigma pi threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.
Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 1.95 to 2.05 GeV corresponding to incident photon energies from 1.56 to 1.77 GeV.
Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.05 to 2.15 GeV corresponding to incident photon energies from 1.77 to 1.99 GeV.
Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.15 to 2.25 GeV corresponding to incident photon energies from 1.99 to 2.23 GeV.
We present measurements of direct photon pair production cross sections using 8.5 fb$^{-1}$ of data collected with the D0 detector at the Fermilab Tevatron $p \bar p$ collider. The results are presented as differential distributions of the photon pair invariant mass $d\sigma/dM_{\gamma \gamma}$, pair transverse momentum $d \sigma /dp^{\gamma \gamma}_T$, azimuthal angle between the photons $d\sigma/d\Delta \phi_{\gamma \gamma}$, and polar scattering angle in the Collins-Soper frame $d\sigma /d|\cos \theta^*|$. Measurements are performed for isolated photons with transverse momenta $p^{\gamma}_T>18 ~(17)$ GeV for the leading (next-to-leading) photon in $p_T$, pseudorapidities $|\eta^{\gamma}|<0.9$, and a separation in $\eta-\phi$ space $\Delta\mathcal R_{\gamma\gamma} > 0.4$. We present comparisons with the predictions from Monte Carlo event generators {\sc diphox} and {\sc resbos} implementing QCD calculations at next-to-leading order, $2\gamma${\sc nnlo} at next-to-next-to-leading order, and {\sc sherpa} using matrix elements with higher-order real emissions matched to parton shower.
The measured differential distribution in the two-photon mass;.
The measured differential distribution in the two-photon transverse momentum;.
The measured differential distribution in the azimuthal angular separation of the two photons;.
The production of $J/\psi$ mesons accompanied by open charm, and of pairs of open charm hadrons are observed in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of $355pb^{-1}$ collected with the LHCb detector. Model independent measurements of absolute cross-sections are given together with ratios to the measured $J/\psi$ and open charm cross-sections. The properties of these events are studied and compared to theoretical predictions.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^0 X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^0)<4$, $3<p_T(D^0)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^+)<4$, $3<p_T(D^+)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D_s^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D_s^+)<4$, $3<p_T(D_s^+)<12$ GeV/$c$ region.
The production of $J/\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \jpsi in the rapidity range $2<y^{J/\psi}<4.5$ and transverse momentum $p_{T}^{J/\psi}<10 GeV/c$ is $$ \sigma^{J/\psi J/\psi} = 5.1\pm1.0\pm1.1 nb,$$ where the first uncertainty is statistical and the second systematic.
Total production cross section for J/PSI pairs.
Differential production cross section for J/PSI pairs as a function of the invariant mass of the J/PSI-J/PSI system. Data read from plot with statistical errors only.
This article reports a measurement of the production cross section of prompt isolated photon pairs in proton-antiproton collisions at \sqrt{s} = 1.96 TeV using the CDF II detector at the Fermilab Tevatron collider. The data correspond to an integrated luminosity of 5.36/fb. The cross section is presented as a function of kinematic variables sensitive to the reaction mechanisms. The results are compared with three perturbative QCD calculations: (1) a leading order parton shower Monte Carlo, (2) a fixed next-to-leading order calculation and (3) a next-to-leading order/next-to-next-to-leading-log resummed calculation. The comparisons show that, within their known limitations, all calculations predict the main features of the data, but no calculation adequately describes all aspects of the data.
Diphoton production cross section as a function of the diphoton invariant mass.
Diphoton production cross section as a function of the diphoton transverse momentum.
Diphoton production cross section as a function of the azimuthal angle difference in the two photons.
We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.
The measured 3-jet differential cross section for |y|<0.8 and pT>40 GeV.
The measured 3-jet differential cross section for |y|<1.6 and pT>40 GeV.
The measured 3-jet differential cross section for |y|<2.4 and pT>40 GeV.