Showing 3 of 3 results
A search is presented for flavour-changing neutral-current interactions involving the top quark, the Higgs boson and an up-type quark ($q=u,c$) with the ATLAS detector at the Large Hadron Collider. The analysis considers leptonic decays of the top quark along with Higgs boson decays into two $W$ bosons, two $Z$ bosons or a $\tau^{+}\tau^{-}$ pair. It focuses on final states containing either two leptons (electrons or muons) of the same charge or three leptons. The considered processes are $t\bar{t}$ and $Ht$ production. For the $t\bar{t}$ production, one top quark decays via $t\to Hq$. The proton-proton collision data set analysed amounts to 140 fb$^{-1}$ at $\sqrt{s}=13$ TeV. No significant excess beyond Standard Model expectations is observed and upper limits are set on the $t\to Hq$ branching ratios at 95% confidence level, amounting to observed (expected) limits of $\mathcal{B}(t\to Hu)<2.8\,(3.0) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.3\,(3.8) \times 10^{-4}$. Combining this search with other searches for $tHq$ flavour-changing neutral-current interactions previously conducted by ATLAS, considering $H\to b\bar{b}$ and $H\to\gamma\gamma$ decays, as well as $H\to\tau^{+}\tau^{-}$ decays with one or two hadronically decaying $\tau$-leptons, yields observed (expected) upper limits on the branching ratios of $\mathcal{B}(t\to Hu)<2.6\,(1.8) \times 10^{-4}$ and $\mathcal{B}(t\to Hc)<3.4\,(2.3) \times 10^{-4}$.
Pre-fit background composition of the SR$2\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$2\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Dec. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Pre-fit background composition of the SR$3\ell$ Prod. The table shows the event yields as opposed to just the percentages of the relevant background processes.
Post-fit plot of $H_\text{T}(\text{jets})$ in the SR$2\ell$ Dec from a signal-blinded background-only fit.
Post-fit plot of $m(t_\text{SM}, b\text{-jet}_0)$ in the SR$2\ell$ Prod from a signal-blinded background-only fit.
Post-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Dec from a signal-blinded background-only fit.
Post-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Prod from a signal-blinded background-only fit.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Prod from the full fit to data.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Prod from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$e$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$\mu$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ $t\bar{t}V$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$e$ from the full fit to data.
Post-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$\mu$ from the full fit to data.
Post-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}W$ from the full fit to data.
Post-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}Z$ from the full fit to data.
Observed and expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hu)$ for different analyses and their statistical combination.
Observed and expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hc)$ for different analyses and their statistical combination.
Post-fit normalisation factors of free-floating background processes and the signal normalisation.
Post-fit predicted and observed yields in all $2\ell$SS signal and control regions. Pre-fit signal contributions for a signal cross section equivalent to $\mathcal{B}(t\to Hq)=0.1\,\%$ are given as well.
Post-fit predicted and observed yields in all $3\ell$ signal and control regions. Pre-fit signal contributions for a signal cross section equivalent to $\mathcal{B}(t\to Hq)=0.1\,\%$ are given as well.
Expected upper limits on $\mathcal{B}(t\to Hq)$ for the nominal fit and alternative fit configurations. One contains the full phase space but only considers statistical uncertainties. Two other configurations consider the full set of systematic uncertainties, but only encompass one final state.
Expected and observed upper limits on $\mathcal{B}(t\to Hq)$ and $|C_{u\phi}^{qt,tq}|$ for the full fit containing all systematic uncertainties.
Pre-fit plot of $H_\text{T}(\text{jets})$ in the SR$2\ell$ Dec from a signal-blinded background-only fit.
Pre-fit plot of $m(t_\text{SM}, b\text{-jet}_0)$ in the SR$2\ell$ Prod from a signal-blinded background-only fit.
Pre-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Dec from a signal-blinded background-only fit.
Pre-fit plot of $m(\ell_\text{OS},\ell_\text{SS,1})$ in the SR$3\ell$ Prod from a signal-blinded background-only fit.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Prod from the full fit to data.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Dec from the full fit to data.
Post-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$2\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHc)$ in the SR$3\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$2\ell$ Prod from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Dec from the full fit to data.
Pre-fit plot of $D_\text{NN}(tHu)$ in the SR$3\ell$ Prod from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$e$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ HF$\mu$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_1)$ in the CR$2\ell$ $t\bar{t}V$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$e$ from the full fit to data.
Pre-fit plot of $p_\text{T}(\ell_2)$ in the CR$3\ell$ HF$\mu$ from the full fit to data.
Pre-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}W$ from the full fit to data.
Pre-fit plot of $p_\text{T}(b\text{-jet}_0)$ in the CR$3\ell$ $t\bar{t}Z$ from the full fit to data.
Ranking of fit nuisance parameters according to their impact on the post-fit $tHu$ signal normalisation when fixed to $\pm1\sigma$
Ranking of fit nuisance parameters according to their impact on the post-fit $tHc$ signal normalisation when fixed to $\pm1\sigma$
Expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hu)$ for each individual final state and the full analysis.
Expected upper exclusion limits on the branching ratio $\mathcal{B}(t\to Hc)$ for each individual final state and the full analysis.
Measurements of differential and double-differential cross sections of top quark pair ($\text{t}\overline{\text{t}}$) production are presented in the lepton+jets channels with a single electron or muon and jets in the final state. The analysis combines for the first time signatures of top quarks with low transverse momentum $p_\text{T}$, where the top quark decay products can be identified as separated jets and isolated leptons, and with high $p_\text{T}$, where the decay products are collimated and overlap. The measurements are based on proton-proton collision data at $\sqrt{s} = $ 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. The cross sections are presented at the parton and particle levels, where the latter minimizes extrapolations based on theoretical assumptions. Most of the measured differential cross sections are well described by standard model predictions with the exception of some double-differential distributions. The inclusive $\text{t}\overline{\text{t}}$ production cross section is measured to be $\sigma_{\text{t}\overline{\text{t}}} = $ 791 $\pm$ 25 pb, which constitutes the most precise measurement in the lepton+jets channel to date.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
differential cross sections.
A search for the production of heavy partners of the top quark with charge 5/3 is performed in events with a pair of same-sign leptons. The data sample corresponds to an integrated luminosity of 19.5 inverse femtobarns and was collected at sqrt(s) = 8 TeV by the CMS experiment. No significant excess is observed in the data above the expected background and the existence of top-quark partners with masses below 800 GeV is excluded at a 95% confidence level, assuming they decay exclusively to tW. This is the first limit on these particles from the LHC, and it is significantly more restrictive than previous limits.
The distribution of HT for all channels combined after the full selection except for the HT requirement itself.
Expected and observed 95% CL limits on the $\mathrm{T}_{5/3}$ production cross section times the branching fraction for decay to same-sign dileptons.
The distribution of HT for all channels combined, after the requirement of same- sign dileptons, the Z-boson veto, and a requirement of at least two jets.
The distribution of the reconstructed $\mathrm{T}_{5/3}$ mass for the data, the background, and three signal mass points.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.