Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).
No description provided.
Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.
A high statistics experiment was performed on Bhabha scattering at energies between 14 and 34 GeV. Good agreement with QED was observed. The combined data on Bhabha scattering and μ pair production were found to agree with the standard theory of electroweak interaction giving sin 2 θ = 0.27 −0.07 +0.06 . Assuming for the Z 0 mass a value of 90 GeV the leptonic weak coupling constants were determined to g V 2 = −0.04 ± 0.06 and g A 2 = 0.35 ± 0.09. A search for scalar leptons sets lower limits on the mass of scalar electrons of M s e > 16.6 GeV and of scalar muons of M s μ > 16.4 GeV.
No description provided.
No description provided.
The e + e − → τ + τ − process has been measured using the CELLO detector at a mean total centre of mass energy of 34.2 GeV using essentially all the decay channels of the τ lepton. The measured cross section yields R τ =1.03±0.05 (stat)±0.07 (syst). Topological branching fraction are given for τ → 1, 3 or 5 charged tracks. The angular distribution shows a clear 1 + cos 2 θ dependance with a forward-backward asymmetry of -0.103 ± 0.052 corresponding to an axial-vector coupling a τ of the τ to the weak neutral current given by a τ =−1.12 ± 0.57.
No description provided.
No description provided.
Forward-backward asymmetry based on 1 + (cos(theta))**2 + bcos(theta) fit for angular distribution.
The reaction (e+e−→μ+μ−) has been measured between\(\sqrt S= 14.0\) and\(\sqrt S= 36.4\). The total cross section result is in good agreement with the QED prediction and the following Λ values have been obtained:Λ+=186 GeV,Λ−=101 GeV. The angular distribution at high energy (\(\left( {\left. {\left\langle {\sqrt S } \right.} \right\rangle= 34.2 GeV} \right)\)) shows a fitted charge asymmetry of −0.064±0.064 in agreement with theW-S model prediction of −0.092, corresponding to an axial coupling parametera2=4ga2=0.69±0.69.
No description provided.
No description provided.
Errors include contribution from systematics. Result based on fit(1 + cos(theta)**2 + q cos(theta)) to corrected angular distribution.
The final state K − pn has been analyzed in a K − deuterium bubble chamber experiment at K − momenta between 680 and 840 MeV/ c . Differential cross sections for elastic K − p and K − n scattering in the c.m. energy range of 1.60–1.74 GeV are presented. The results for K − p→K − p agree well with existing data obtained with hydrogen targets. The results for K − n→K − n are lower but still compatible with recent measurements from a counter experiment.
No description provided.
No description provided.
PLAB IS THE EFFECTIVE KAON LAB MOMENTA CORRESPONDING TO THE GIVEN CM ENERGY ASSUMING AN ON-SHELL TARGET NUCLEON AT REST.
Results from K± elastic and inelastic scattering from C12 and Ca40 are reported. The data were all taken at an incident momentum of 800 MeV/c over an angular range from 2° to 38°. The elastic data are compared to first-order optical model calculations in coordinate and momentum space; good qualitative agreement is obtained. The inelastic data (from C12 only) are compared to distorted-wave Born approximation calculations, and good agreement is found if "realistic" inelastic transition densities are used. Although a first-order optical potential description does not describe the data fully, there are strong indications of the increased penetrability of K+ over K− in this energy range. NUCLEAR REACTIONS C12(K±,K±)C12, Ca40(K±,K±)Ca40, E=442 MeV (800 MeV/c), measured σ(θ) for elastic and inelastic scattering, compared to optical model and DWBA calculations, deduced optical potential parameters; θ=2°−38°, Δθ=1°.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.0100 DEG.
X ERROR D(THETA) = 1.1000 DEG.
π−-photoproduction cross sections from neutrons have been measured with a deuterium target at effective γ-energies from 900 to 1,800 MeV and pion centre-of-mass angles 65 to 125°. The outgoing pion and proton were detected in coincidence, the pion with a magnetic spectrometer and the proton with a time-of-flight system. To test the reliability of the analysis method, a comparison of π+-photoproduction from protons and deuterons was made with a slightly modified apparatus. It was found adequate to use the spectator model with a Huthèn wave function.
No description provided.
We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
No description provided.
No description provided.
The angular distribution and the s dependence of the total cross section for the process e + e − → μ + μ − have been measured using the JADE detector at PETRA. After radiative corrections, a forward-backward asymmetry of −(11.8±3.8) % was observed at an average centre of mass energy of 33.5 GeV. For comparison, an asymmetry of −7.8 % is expected on the basis of the standard Glashow-Salam-Weinberg model.
Best fit to total cross section in energy range.
ANGULAR DISTRIBUTION.
Forward-backward asymmetry within the acceptnce region.
The differential cross sections of the reactions e + e − → e + e − and e + e − → λλ are measured at energies between 33.0 and 36.7 GeV. The results agree with the predictions of quantum electrodynamics. A comparison with the standard model of electroweak interaction yields sin 2 θ W = 0.25 ± 0.13.
No description provided.
No description provided.