The production of leading neutrons, where the neutron carries a large fraction x_L of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb^{-1}. The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6 < Q^2 < 100 GeV^2, Bjorken scaling variable 1.5x10^{-4} < x < 3x10^{-2}, longitudinal momentum fraction 0.32 < x_L < 0.95 and neutron transverse momentum p_T < 0.2 GeV. The leading neutron structure function, F_2^{LN(3)}(Q^2,x,x_L), and the fraction of deep-inelastic scattering events containing a leading neutron are studied as a function of Q^2, x and x_L. Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function.
Differential cross section of leading neutron production.
The semi-inclusive leading neutron structure function for Q**2.
The semi-inclusive leading neutron structure function for Q**2.
The inclusive cross section for the photoproduction of neutral pions has been measured as a function of the transverse momentum, rapidity, and Feynman x of the pizero mesons at an average photon--proton centre-of-mass energy of 208 GeV and for photon virtualities below Q^2=0.01 GeV^2. The pizero measurement extends the range covered by previous charged particle measurements at HERA by two units of rapidity in the photon direction down to a value of -5.5 in the gamma p centre-of-mass frame. The pizero transverse momentum distribution is well described over the whole measured range by a power law ansatz, while an exponential fit falls below the data at transverse momentum values above 1.5 GeV/c. Good agreement with the predictions of the Monte Carlo models PYTHIA and PHOJET is found. In the context of the PYTHIA model the data are inconsistent with large intrinsic transverse momentum values in the photon.
The inclusive PI0 photoproduction cross section in bias of rapidity and PT.Bin centre corrections have been applied and the errors are the quadratic sum o f the statistics and systematics (which dominate).
The inclusive PI0 photoproduction cross section as a function of PT for therapidity range -3.5 to -1.5. Bin centres are given in addition to limits. Error s are the quadratic sum of statistics and systematics.
The inclusive PI0 photoproduction cross section as a function of XL (the Feyman X variable) for the rapidity range -3.5 to -1.5. Bin centres are given as well as limits. Errors are the quadratic sum of statistics and systematics.
The inclusive production of ρ0 mesons was measured in γp andh±p collisions at beam energies of 65 GeV≦Eγ≦175 GeV andEh=80, 140 GeV, respectively, whereh is π orK. Cross sections were determined for all beams and energies as functions ofxF (−0.1≦xF≦1.0),pT (0≦pT≦3.5 GeV/c) and the polar decay angle of the ρ0 by fitting the ρ0 signal in π+π- mass distributions. The ρ0 line shape is found to be distorted from a pure Breit-Wigner distribution throughout most of thexF−pT plane for both photon and hadron beams and a simple explanation is suggested. Throughout the paper emphasis is put on the comparison of photon and hadron beam data. The comparison of cross sections of γp andhp data provides a measure of the Vector Meson Dominance factor throughout thexF−pT range of the ρ0. The ρ0 production at lowpT can be described for both photon and hadron beams by a triple regge model at largexF. Similarly central production is well described by the quark-antiquark fusion model. At largepT there is an excess of ρ0 photoproduction which is consistent with the expected onset of pointlike photon interactions.
No description provided.
No description provided.
No description provided.
Single charged-particle inclusive cross sections for photon, pion and kaon beams on hydrogen at the CERN-SPS are presented as functions ofpT andxF. Data cover the range 0.0
No description provided.
No description provided.
No description provided.
A study of the properties of charm particles produced in 360 GeV/c π-p interactions is reported. The experiment was performed using the high resolution hydrogen bubble chamber LEBC in association with the European Hybrid Spectrometer at the CERN SPS. Details of the exposure and operation of the spectrometer are given and the methods used to extract the charm data are presented. The essential physics results on the decay properties (lifetime, branching ratios) as well as on the hadroproduction properties (cross sections forD,\(\bar D\),F, Λc,D, correlations between charm particles) are given.
No description provided.
No description provided.
Results are presented on the inclusive photoproduction of λ and λ for incident photon energies between 25 and 70 GeV. The slope parameter of the p T 2 distribution is found to be 2.83±0.1 GeV −2 for λ and 3.28±0.25 GeV −2 for λ . The x F distributions, measured in the range −0.2 to 0.7, show that while λ are produced centrally, λ production extends to more negative values of x F ; the shapes show no energy dependence and are similar to those in pion-induced reactions. The polarization of the produced λ is less than 10%. The results are discussed in terms of vector dominance and quark fusion models.
No description provided.
No description provided.
No description provided.