Date

Angular dependence of analyzing power in n p elastic scattering between 0.312-GeV and 1.1-GeV

Ball, J. ; Chesny, P. ; Combet, M. ; et al.
Nucl.Phys.A 559 (1993) 489-510, 1993.
Inspire Record 341321 DOI 10.17182/hepdata.36590

We present a total of 427 np analyzing power data points in a large angular interval at 12 energies between 0.312 and 1.10 GeV. The SATURNE II polarized beam of free monochromatic neutrons was scattered either on the Saclay frozen-spin polarized proton target or on CH 2 and C targets. Present results are compared with existing elastic and quasieleastic data.

18 data tables

Results of the analyzing power for n p scattering at 0.312 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.363 GeV. The CH2 target was used.

Results of the analyzing power for n p scattering at 0.800 GeV.

More…

Measurement of the polarization of tau leptons produced in Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 265 (1991) 430-444, 1991.
Inspire Record 316781 DOI 10.17182/hepdata.29377

The polarization of τ leptons produced in the reaction e + e − → τ + τ − at the Z resonance has been measured using the τ decay modes e ν e ν τ , μν μ ν τ , πν τ , ϱν τ , and a 1 ν τ . The mean value obtained is P τ = −0.152±0.045, indicating that parity is violated in the neutral current process e + e − → τ + τ − . The result corresponds to a ratio of a neutral current vector and axial vector coupling constants of the τ lepton g V τ (M 2 Z ) g A τ (M 2 Z ) = 0.076±0.023 and a value of the electroweak mixing parameter sin 2 θ w ( M 2 Z ) = 0.2302 ± 0.0058.

2 data tables

Results are for both TAU+ and TAU- decay. Final combined result contains statistical and systematic errors added in quadrature.

No description provided.


Energy dependence of the neutron proton total cross-section differences Delta (sigma-T) and Delta (sigma-L) between 0.31-GeV and 1.1-GeV

Fontaine, J.M. ; Kunne, F. ; Bystricky, J. ; et al.
Nucl.Phys.B 358 (1991) 297-310, 1991.
Inspire Record 320446 DOI 10.17182/hepdata.33013

Final results for total cross section differences Δσ T and Δσ L measured with a polarized neutron beam transmitted through a polarized proton target are presented. Measurements were carried out at SATURNE II, at 11 energies between 0.63 and 1.1 GeV for Δσ T and at 9 energies between 0.312 and 1.1 GeV for Δσ L . The results are compared with measurements at PSI and LAMPF as well as with Δσ L data points deduced from p-d and p-p transmission experiments at the ANL-ZGS. The present results together with the corresponding pp data allow to determine two of the three imaginary parts of forward scattering amplitudes for isospin I = 0.

4 data tables

Measurements of the tranverse cross section differences.

Measurements of the tranverse cross section differences.

Measurement of the longitudinal cross section difference.

More…

Polarized target asymmetry in pion proton bremsstrahlung at 298-MeV

Bosshard, A. ; Amsler, Claude ; Bistirlich, J.A. ; et al.
Phys.Rev.Lett. 64 (1990) 2619-2622, 1990.
Inspire Record 303404 DOI 10.17182/hepdata.22827

First data are presented for the polarized-target asymmetry in the reaction π+p→π+pγ at an incident pion energy of 298 MeV. The geometry was chosen to maximize the sensitivity to the radiation of the magnetic dipole moment μΔ of the Δ++(1232 MeV). A fit of the asymmetry in the cross section d5σ/dΩπ dΩγ dk as a function of the photon energy k to predictions from a recent isobar-model calculation with μΔ as the only free parameter yields μΔ=1.64(±0.19expΔ,±0.14 theor)μp. Though this value agrees with bag-model corrections to the SU(6) prediction μΔ=2μp, further clarifications on the model dependence of the result are needed, in particular since the isobar model fails to describe both the cross section and the asymmetry at the highest photon energies.

2 data tables

No description provided.

No description provided.


New Measurement of the Production Polarization and Magnetic Moment of the Cascade Minus Hyperon

Trost, L.H. ; McCliment, E.R. ; Newsom, C.R. ; et al.
Phys.Rev.D 40 (1989) 1703, 1989.
Inspire Record 280604 DOI 10.17182/hepdata.23053

We have measured the production polarization and magnetic moment of a sample of 89×103Ξ− hyperons produced in the inclusive reaction p(400 GeV/c)+Cu→Ξ−+X. The weighted average of the polarization is -0.070±0.008±0.010 at a pt of 0.63 GeV/c. The Ξ−'s magnetic moment yields the value μΞ=−0.661±0.036±0.036 nuclear magnetons. The first error is statistical, the second systematic.

1 data table

No description provided.


Charge Symmetry Breaking in $n p$ Elastic Scattering at 477-{MeV}

Abegg, R. ; Bandyopadhyay, D. ; Birchall, J. ; et al.
Phys.Rev.D 39 (1989) 2464, 1989.
Inspire Record 267187 DOI 10.17182/hepdata.23224

The effect of isospin-violating, charge-symmetry-breaking (CSB) terms in the np interaction has been observed at TRIUMF by measuring the difference in the zero-crossing angles of the neutron and proton analyzing powers, An and Ap, at a neutron energy of 477 MeV. The scattering asymmetries were measured with a neutron beam incident on a polarizable proton target. To reduce systematic errors, interleaved measurements of An and Ap were made using the same beam and target (apart from their respective polarization states). Neutrons and protons were detected in coincidence in the center-of-mass angle range from 59°–80°. The difference in zero-crossing angles was 0.340°±0.162° (±0.058°), which yields ΔA≡An-Ap=0.0047±0.0022 (±0.0008) using dA/dθc.m.=−0.01382 deg−1. The second errors represent systematic effects. This result is in good agreement with recent theoretical calculations which include CSB effects due to the np mass difference in π, ρ, and 2π exchange, electromagnetic coupling of the neutron anomalous magnetic moment to the proton current, ρ-ω-meson mixing, and short- and medium-range effects of the up- and down-quark mass difference.

1 data table

No description provided.


Measurement of the Spin Correlation Parameter A(00nn ($P P$ in a Large Angular Region Between 0.88-{GeV} and 2.7-{GeV}

Lehar, F. ; De Lesquen, A. ; Meyer, J.P. ; et al.
Nucl.Phys.B 294 (1987) 1013-1021, 1987.
Inspire Record 255230 DOI 10.17182/hepdata.33526

The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.

8 data tables

Errors are statistical plus random-like instrumental uncertainties.

Errors are statistical plus random-like instrumental uncertainties.

Errors are statistical plus random-like instrumental uncertainties.

More…

Measurement of the $P P$ Analyzing Power A(00n0) in a Large Angular Region Between 0.88-{GeV} and 2.7-{GeV}

Perrot, F. ; Fontaine, J.M. ; Lehar, F. ; et al.
Nucl.Phys.B 294 (1987) 1001-1012, 1987.
Inspire Record 255229 DOI 10.17182/hepdata.33562

The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.

16 data tables

Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.

Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.

Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.

More…

Test of Charge Symmetry in Neutron - Proton Elastic Scattering at 477-{MeV}

Abegg, R. ; Bandyopadhyay, D. ; Birchall, J. ; et al.
Phys.Rev.Lett. 56 (1986) 2571, 1986.
Inspire Record 228239 DOI 10.17182/hepdata.20237

An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).

1 data table

No description provided.


Measurement of Sigma- Production Polarization and Magnetic Moment

Wah, Y.W. ; Cardello, T.R. ; Cooper, P.S. ; et al.
Phys.Rev.Lett. 55 (1985) 2551-2554, 1985.
Inspire Record 218614 DOI 10.17182/hepdata.42574

We have measured the production polarization of 265- and 310-GeV/c Σ− in the inclusive reaction p+Cu→Σ−+X using 400-GeV/c protons. The polarization was analyzed via the asymmetry in the weak decay Σ−→n+π−, and has typical values of +0.20 with respect to the direction of the cross product of the incident-proton and Σ− momenta. Using the spin-precession technique, we have determined the Σ− magnetic moment to be -1.23±0.03±0.03 nuclear magnetons, where the statistical and systematic errors are shown separately.

3 data tables

No description provided.

No description provided.

No description provided.