The nuclear modification factors of J/$\psi$ and $\psi$(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} =$ 5.02 TeV. The analysis is based on PbPb and pp data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 $\mu$b$^{-1}$ and 28 pb$^{-1}$, respectively. The measurements are performed in the dimuon rapidity range of $|y| <$ 2.4 as a function of centrality, rapidity, and transverse momentum (p$_\mathrm{T}$) from p$_\mathrm{T}=$ 3 GeV/$c$ in the most forward region and up to 50 GeV/$c$. Both prompt and nonprompt (coming from b hadron decays) mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at $\sqrt{s_{\mathrm{NN}}}=$ 2.76 TeV for the two J/$\psi$ meson components. No dependence on rapidity is observed for either prompt or nonprompt J/$\psi$ mesons. An indication of a lower prompt J/$\psi$ meson suppression at p$_\mathrm{T} >$ 25 GeV/$c$ is seen with respect to that observed at intermediate p$_\mathrm{T}$. The prompt $\psi$(2S) meson yield is found to be more suppressed than that of the prompt J/$\psi$ mesons in the entire p$_\mathrm{T}$ range.
Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon pT for pp and PbPb collisions, for all centralities.
Fraction of J/psi mesons coming from the decay of b hadrons, i.e. nonprompt J/psi meson fraction, as a function of dimuon rapidity for pp and PbPb collisions, for all centralities.
Differential cross section of prompt J/psi mesons as a function of dimuon pT in pp and PbPb collisions. The PbPb cross sections are normalised by TAA for direct comparison. Global uncertainties arise from the integrated luminosity uncertainty in pp collisions, and the number of minimum bias events and TAA uncertainties for PbPb collisions.
Charmonium production in p – A collisions is a unique tool for the study of the interaction of bound c c states in nuclear matter. It can provide details on the basic features of the resonance formation mechanism and, in particular, on its non-perturbative aspects. In this Letter, we present an experimental study of charmonia and Drell–Yan production in proton–nucleus collisions at 450 GeV/ c . The results are analyzed in the framework of the Glauber model and lead to the values of the nuclear absorption cross-section σ abs pA for J / ψ and ψ ′. Then, we compare the J / ψ absorption in proton–nucleus and sulphur–uranium interactions, using NA38 data. We obtain that, for the J / ψ , σ abs pA and σ abs SU are compatible, showing that no sizeable additional suppression mechanism is present in S–U collisions, and confirming that the anomalous J / ψ suppression only sets in for Pb–Pb interactions.
The J/PSI production cross section times the branching ratio to MU+ MU- pernucleon-nucleon collision for the differential nuclear targets.
The PSI(3685) production cross section times the branching ratio to MU+ MU-per nucleon-nucleon collision for the differential nuclear targets.
The Drell Yan cross section, divided by the mass number A, and multiplied by the isospin correction factors in the mass interval 2.9 to 4.5 GeV.
A partial-wave analysis has been performed of the diffractively produced low-mass ( K ̄ 0 π − π 0 ) system in the reaction K − p → ( K ̄ 0 π − π 0 ) p at 10 and 16 GeV/ c . Thus information complementary to that derived from the K − p → (K − π + π − )p) channel is obtained. The presence of the K ϱ decay mode, besides the dominant K ∗ (890)π mode, for the state J P = 1 + , is confirmed. It is also confirmed that for this 1 + state the assumption of factorization of the amplitude into “production” and “decay” does not hold: the two decay modes K ∗ π and K ϱ have different polarisation properties (helicity is approximately conserved in the t -channel for the first, in the s -channel for the second). The assumption that the ( K ̄ 0 π − π 0 ) system has isospin I = 1 2 has been tested and found to hold. From the cross sections for the various J P states, assuming I = 1 2 , the cross sections for the (K − π + π − ) system are predicted and compared with the experimental ones. In general, agreement is found.
No description provided.
No description provided.
The pp→ppη reaction is studied at energies near the η production threshold. The total cross sections at nominal machine energies of 1260, 1265, and 1300 MeV are 90±15, 790±120, and 3460±690 nb, respectively. None of the existing perturbative model calculations reproduces the energy dependence, which deviates strongly from phase space. This suggests that the cross section is enhanced in the near vicinity of the production threshold by a large η−pp scattering length.
No description provided.
Asymmetries in charged-pion photoproduction from hydrogen and deuterium have been measured with 16-GeV linearly polarized photons. Considerable energy dependence is seen in the natural-parity contribution to the π−π+ ratio from deuterium, and in the unnatural-parity part of the cross section for γn→π−p. The energy dependence of this latter cross section is consistent with the expected from a conventional pion Regge trajectory.
No description provided.
No description provided.
No description provided.
Compton-scattering cross sections from hydrogen (γp→γp) and from deuterium have been measured at four-momentum transfer t in the range 0.014<~−t<~0.17 GeV2 and photon energies of 8 and 16 GeV. Fits to our proton data of the form dσdt=AeBt give B≈7.8 GeV−2 and an intercept A which is in agreement with the optical point. Both coherent scattering from deuterons and incoherent scattering from neutrons and protons are seen from deuterium. A small difference between the neutron and proton cross sections is seen, indicating the presence of about a 3% isovector t-channel exchange amplitude in addition to the predominant isoscalar amplitude. The vector-dominance model predicts lower cross sections (by at least 20%) for both the hydrogen and deuterium cases.
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
Axis error includes +- 3/3 contribution (SUBTRACTIONS WERE MADE FOR THE REACTIONS GAMMA P --> PI0 N, ETA N, OMEGA N AND PI0 DELTA(1232)).
The asymmetries in forward π−N, π−Δ, and K+−(Λ+Σ) photoproduction have been measured with a 16-GeV linearly polarized beam. The experimental method and the procedures for extracting cross sections and asymmetries from the data are discussed in detail. Information on the energy and momentum-transfer dependence of cross sections for natural- and unnatural-parity exchange, interference between exchanges of opposite G parity, and vector-meson dominance is obtained and discussed.
ASYMMETRIES AND DIFFERENTIAL CROSS SECTIONS FOR PION-NUCLEON PHOTOPRODUCTION WERE FIRST PUBLISHED IN D. J. SHERDEN ET AL., PRL 30, 1230 (1973) AND PRL 31, 667 (1973) (ERRATUM). THESE SLIGHTLY REVISED NUMBERS ARE INCLUDED IN THE RECORD OF THE 1973 PAPER.
No description provided.
No description provided.
We report γp total, topological, and channel cross sections at 9.3 GeV from a bubblechamber experiment using a nearly monoenergetic photon beam.
No description provided.
The cross sections for Ξ− and Ω− inclusive production in Ξ− Be collisions at 116 GeV/c have been measured in the kinematic domain [0.1<xF<0.9, 0<pT<1.7 GeV/c]. The integrated cross sections per nucleon are found to be about twice as large as in Ξ−p collisions. The invariant cross sections increase by a factor of 70 for the Ξ−s and of 100 for the Ω−s between the central region (xF∼0.2) and the projectile fragmentation region (xF∼0.8). In the central region, they have about the same magnitude as the ones for Ξ− and Ω− inclusive production inp nucleon collisions. The Ξ− and Ω− polarisations have been measured over the same kinematic domain and are found to be compatible with zero.
No description provided.
No description provided.
No description provided.
TheΞ-p differential elastic cross section has been measured in the SPS hyperon beam at 102 and 135 GeV/c. In the range 0.01<−<0.42(GeV/c)2, thet distributions are found to be compatible with the formA exp(Bt) whereB is 7.7±0.4(GeV/c)−2 at 102 GeV/c and 8.2 ±0.5(GeV/c)−2 at 135 GeV/c. The corresponding total elastic cross sections areσel=4.9±0.7 mb andσel=5.6±0.9 mb, respectively. These results are compared with the predictions of phenomenological models.
NUMERICAL VALUES OF DATA SUPPLIED BY P.ROSSELET.
No description provided.