The Sigma^- mean squared charge radius has been measured in the space-like Q^2 range 0.035-0.105 GeV^2/c^2 by elastic scattering of a Sigma^- beam off atomic electrons. The measurement was performed with the SELEX (E781) spectrometer using the Fermilab hyperon beam at a mean energy of 610 GeV/c. We obtain <r^2> = (0.61 +/- 0.12 (stat.) +/- 0.09 (syst.)) fm^2. The proton and pi^- charge radii were measured as well and are consistent with results of other experiments. Our result agrees with the recently measured strong interaction radius of the Sigma^-.
Total systematic errors are given.
We report on a measurement of the mass dependence of the forward-backward charge asymmetry, A_FB, and production cross section dsigma/dM for e+e- pairs with mass M_ee>40 GeV/c2. The data sample consists of 108 pb-1 of p-pbar collisions at sqrt(s)=1.8 TeV taken by the Collider Detector at Fermilab during 1992-1995. The measured asymmetry and dsigma/dM are compared with the predictions of the Standard Model and a model with an extra Z' gauge boson.
The E+ E- production cross section and the forward-backward asymmetry. The errors contain the statistical and systematic uncertainties combined in quadrature, but not the additional uncertainty of the luminosity.
The forward, backward and total production cross sections for dielectron production for the mass regions above 105 GeV. The errors contain the statistical and systematic uncertainties combined in quadrature, but not the additional uncertainty of the luminosity.
The production cross section for di-muons for the mass region above 105 GeV. The errors contain the statistical and systematic uncertainties combined in quadrature, but not the additional uncertainty of the luminosity.
We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.
Cross sections for double diffractive production.
We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 $pb^{-1}$ of $p\bar{p}$ collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both $p\bar{p} \to \gamma \gamma + X$ and $p \bar{p} \to \gamma \gamma + W/Z$. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale $\sqrt{F}$ in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for $H \to \gamma \gamma$. Finally, we set a lower limit on the mass of a 'bosophilic' Higgs boson (e.g. one which couples only to $\gamma, W,$ and $Z$ bosons with standard model couplings) of 82 GeV/$c^2$ at 95% confidence level.
No description provided.
No description provided.
The fragmentation of b quarks into B mesons is studied with four million hadronic Z decays collected by the ALEPH experiment during the years 1991-1995. A semi-exclusive reconstruction of B->l nu D(*) decays is performed, by combining lepton candidates with fully reconstructed D(*) mesons while the neutrino energy is estimated from the missing energy of the event. The mean value of xewd, the energy of the weakly-decaying B meson normalised to the beam energy, is found to be mxewd = 0.716 +- 0.006 (stat) +- 0.006 (syst) using a model-independent method; the corresponding value for the energy of the leading B meson is mxel = 0.736 +- 0.006 (stat) +- 0.006 (syst). The reconstructed spectra are compared with different fragmentation models.
Normalized binned spectra for weakly-decaying (WD) leading (L) B-mesons.
The extracted spectra spectra for weakly-decaying (WD) leading (L) B-mesons.
Statistical error matrix for the Weakly Decaying distribution in units of 10**-6.
Measurements of the A dependence and pseudorapidity interval (δη) dependence of midrapidity ET distributions in a half-azimuth (Δφ=π) electromagnetic calorimeter are presented for p+Be, p+Au, O+Cu, Si+Au, and Au+Au collisions at the BNL-AGS (Alternating-Gradient Synchrotron). The shapes of the upper edges of midrapidity ET distributions as a function of the pseudorapidity interval δη in the range 0.3 to 1.3, roughly centered at midrapidity, are observed to vary with δη, like multiplicity—the upper edges of the distributions flatten as δη is reduced. At the typical fixed upper percentiles of ET distributions used for nuclear geometry characterization by centrality definition—7 percentile, 4 percentile, 2 percentile, 1 percentile, 0.5 percentile—the effect of this variation in shape on the measured projectile Ap dependence for 16O, 28Si, 197Au projectiles on an Au target is small for the ranges of δη and percentile examined. The ET distributions for p+Au and p+Be change in shape with δη; but in each δη interval the shapes of the p+Au and p+Be distributions remain indentical with each other—a striking confirmation of the absence of multiple-collision effects at midrapidity at AGS energies. The validity of the nuclear geometry characterization versus δη is illustrated by plots of the ET(δη) distribution in each δη interval in units of the measured 〈ET(δη)〉p+Au in the same δη interval for p+Au collisions. These plots, in the physically meaningful units of “number of average p+Au collisions,” are nearly universal as a function of δη, confirming that the reaction dynamics for ET production at midrapidity at AGS energies is governed by the number of projectile participants and can be well characterized by measurements in apertures as small as Δφ=π, δη=0.3.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.22 < ETARAP < 2.5, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.38 < ETARAP < 2.34, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.54 < ETARAP < 2.18, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
The polarisation of $\tau$'s produced in Z decay is measured using 160 pb$^{-1}$ of data accumulated at LEP by the ALEPH detector between 1990 and 1995. The variation of the polarisation with polar angle yields the two parameters ${\cal A}_e = 0.1504 \pm 0.0068 $ and ${\cal A}_{\tau} = 0.1451 \pm 0.0059$ which are consistent with the hypothesis of $e$-$\tau$ universality. Assuming universality, the value ${\cal A}_{e{-}\tau} = 0.1474 \pm 0.0045$ is obtained from which the effective weak mixing angle $\sin^2 {\theta_{\mathrm{W}}^{\mathrm{eff}}} =0.23147 \pm 0.00057 $ is derived.
No description provided.
We report values of $R = \sigma(e^+e^-\to {hadrons})/\sigma(e^+e^-\to\mu^+\mu^-)$ for 85 center-of-mass energies between 2 and 5 GeV measured with the upgraded Beijing Spectrometer at the Beijing Electron-Positron Collider.
Measured values of R.
We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23 million Upsilon(4S)-->B-anti-B decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events where one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay time distributions in such events. The result is sin2beta=0.34 +/- 0.20 (stat) +/- 0.05 (syst).
Standard Model predicts the time-dependent rate asymmetry as follows: A(t) = (B0(t)-BBAR0(t))/(B0(t)+BBAR0(t)) = SIN(2*BETA)*SIN(Delta(M)*t), where Delta(M) is the mass difference between the two B0 mass eigenstates. The total systematic error equals +0.50 -0.46.
The triple gauge-boson couplings involving the W are determined using data samples collected with the ALEPH detector at mean centre-of-mass energies of 183 GeV and 189 GeV, corresponding to integrated luminosities of 57 pb^-1 and 174 pb^-1, respectively. The couplings, g^Z_1, Kappa_gamma and lambda_gamma, are measured using W-pair events, single-W production and single-gamma production. Each coupling is measured individually with the other two coupling fixed at their Standard Model value. Including ALEPH results from lower energies, the 95% confidence level intervals for the deviation to the Standard Model are -0.087 < Dg^Z_1 < 0.141 -0.200 < DKappa_gamma < 0.258 -0.062 < Lambda_gamma < 0.147. Fits are also presented where two or all three couplings are allowed to vary. In addition, W-pair events are used to set limits on the C- or P-violating couplings g^V_4, g^V_5, Kappa_V, and Lambda_V, where V denotes either gamma or Z. No deviations from the Standard Model expectations are observed.
The errors included the statistical and systematic uncertainties. Deviation from SM values.
The errors included the statistical and systematic uncertainties. Combined results, lower sqrt(s) data are also included.
The errors included the statistical and systematic uncertainties. Combined results, lower sqrt(s) data are also included. Three-parameter fit.