The differential elastic scattering cross sections for negative pions on ; protons were measured at incident momenta of 1.51, 2.01, and 2.53 Bev/c with ; emphasis on the angular region outside the diffraction peak. The purpose of the ; experiment was to examine the behavior of the largeangle differential elastic ; cross section as a function of energy from the energy of the highest known ; resonance in the pion-nucleon system into the region where the total. cross ; sections appear to be approaching an asymptotic value. The experiment was ; performed at the Bevatron, using a luminescent chamber system to photograph the ; tracks of the scattered pion and the recoil proton from a liquid hydrogen target. ; A total of 2412 elastic scatterings were analyzed at 1.51 Bev/c, 1300 events at ; 2.01 Bev/c, and 1080 events at 2.53 Bev/c. From the existing data it may be ; noted that the backward bump, which has a maximum height of 2.1 mb/sr at 900 Mev ; and 1.1 mb/sr at 1020 Mev, is down to 0.4 mb/sr at 1.51 Bev/c (1.37 Bev), and is ; not present at 2.01 or 2.53 Bev/c. The angular distributions behind the ; diffraction peak at 2.01 and 2.53 Bev/c are rougly constant, decreasing from 0.18 ; mb/sr at 2.01 Bev/c to 0.125 mb/sr at 2.53 Bev/c. Although the data can be taken ; to suggest some oscillatory structure in this region, they are not inconsistent ; with an isotropic distribution that might be interpreted as evidence for an S-; wave scattering behind the diffraction peak. Large-Angle Elastic Scattering of Negative Pions by Protons at 1.51, 2.01, and 2.53 Bev/c.
No description provided.
No description provided.
No description provided.
We present the results of a spin determination of the g 1 − (1640) meson from an analysis of its dipion decay mode (π − π 0 ), and find that spin three (or maybe greater) is favored [1,2]. We also report on the observation of an isospin one KK̄ enhancement at 1640 MeV which is consistent with a new decay mode of the g meson. A relative branching ratio of (K K ̄ /ππ) = 8 ± 3 8 % is obtain from our analysis.
The values of the cross sections were presented for reactions with KS finalstates for visible KS decays only.
The cross section value is corrected for invisible KS decay.
We present a study of A − 2 →K O S K − from the reaction π − p→K O S K − p at 4.5 GeV/ c in the 82-in. hydrogen bubble chamber. From a sample of 542 events from this final state, the mass (and its possible fine structure), width, production distribution and decay correlations of A − 2 are examined.
No description provided.
No description provided.
No description provided.
Results on the following π−p reactions involving a hyperon are studied at 4.5 and 6.0 GeV/c from a high-statistics bubble-chamber experiment. (1) π−p→(Λ, Σ0)K0: Differential cross sections and hyperon polarizations are presented. Comparison with the line-reversed reactions K¯N→(Λ, Σ0)π indicates the failure of the predictions of K*(890) and K*(1420) exchange degeneracy. Effective trajectories for these two reactions are compared. Shrinkage is observed in K¯N→Λπ and not in π−p→ΛK0. (2) π−p→(Λ, Σ0)K*(890)0: Differential cross sections, hyperon polarizations, and K*(890)0 density-matrix elements are determined. ΛK*(890)0 decay correlations are found to impose strong constraints on the scattering amplitudes. The data indicate that both natural- and unnatural-parity exchanges contribute large, but opposite, Λ polarizations. This behavior cannot be explained by a simple exchange model utilizing K and the exchange-degenerate K*(890) and K*(1420) only. Additional trajectories or absorption effects are required to obtain the observed Λ-polarization effects. Comparison of ΛK*(890)0 and Σ0K*(890)0 indicates the greater importance of unnatural-parity exchange in the former reaction. We observe no evidence for deviations from isospin predictions in ΛK*(890)0 production where K*(890)0→K+π− and KS0π0. (3) π−p→ΛK*(1420)0 and ΛK*(1300)0: K*(1420)0 density-matrix elements satisfying positivity constraints are determined allowing for s-wave interference effects. Evidence of the existence of a narrow K*(1300)0→Kππ with a dominant K+ρ− decay mode is observed in the 4.5- and 6-GeV/c data. (4) Σ(1385), Λ(1405), Λ(1520) production: Differential cross sections for the quasi-two-body reactions π−p→Y0K0, where Y0 is Λ(1405), Λ(1520), or Σ(1385)0, are presented and found to have a very similar flat slope in the forward direction. Data for forward K+ scattering in the reaction π−p→Σ(1385)−K+ are presented and discussed. It is argued that this forward peak cannot be explained by kinematic reflection or an s-channel effect and therefore must be due to either two-particle exchange or a single exotic exchange in the t channel.
No description provided.
No description provided.
FIT FOR FORWARD CROSS SECTION AND SLOPE.
The real part of the forward amplitude for Compton scattering on protons was measured through the interference between the Compton and Bethe-Heithler amplitudes by detecting the zero-degree electron pairs asymmetrically. The measurement was made at an average photon energy of 〈k〉=2.2 GeV, and an average momentum transfer to the recoil proton 〈t〉=−0.027 (GeV/c)2. The result confirms the prediction of the Kramers-Kronig relation.
No description provided.
The invariant cross section for the inclusive production of π+, π−, K+, K−, p, and p¯ is presented for proton-nucleon interactions at plab=28.5 GeV/c. Beryllium, titanium, and tungsten targets were used and the yields were extrapolated to A=1 using the power law σ∼Aα. The exponent α increases with pT, except for protons. The pT dependence of the cross sections is compared with a simple fireball model.
No description provided.
No description provided.
We have measured large-transverse-momentum (p⊥) inclusive π0 production at c.m. angles centered near 90° for π±p and pp interactions at 100 and 200 GeV/c. This is the first such measurement using a pion beam. The ratio σ(pp→π0X)σ(πp→π0X) decreases with increasing p⊥ and is independent of energy when expressed as a function of x⊥=p⊥pmax. We compare the data with predictions of various models.
No description provided.
No description provided.
No description provided.
Results are reported for the invariant differential cross-section of charged pions produced at x = 0 in proton-proton collisions at the CERN ISR. The range covered is 40 to 400 MeV/c in transverse momentum and 23 to 63 GeV in collision energy. The inclusive cross-section for π + and π − are increasing by 36 ± 2% and 41 ± 2%, respectively over the ISR energy range with a somewhat stronger increase at the lowest transverse momenta. The transverse momentum distribution is well described by an exponential in the transverse energy.
No description provided.
No description provided.
No description provided.
The inclusive production of low-momentum charged pions, kaons, and protons has been measured at x = 0 over the ISR energy range 23 < √ s < 63 GeV. The average increase in the invariant differential cross section is 36 ± 2% for π + , 41 ± 2% for π − , 52 ± 8% for K + , 69 ± 8% for K − , 8 ± 5% for p, and 84 ± for p ̄ . Pions have been measured in the range 0.04 < p T < 0.4 GeV/ c , kaons over 0.1 < p T < 0.3 GeV/ c , and nucleons over 0.1 < p T < 0.5 GeV/ c .
No description provided.
No description provided.
No description provided.
A high-mass Δ resonance is observed in several final states from π + p interactions at 10.3 GeV/ c . We obtain fitted mass and width values for this structure of 1871 ± 22 MeV and 205 ± 43 MeV, respectively. The branching ratios for decays to π + p, p π + π 0 , n π + π + and Σ + K + are found to be 0.48 ± 0.15, 0.26 ± 0.07, 0.24 ± 0.07 and 0.03 ± 0.01, respectively. The Δϱ, Δω differential cross sections and the ϱ 0 density matrix elements are examined.
DEL(1950B) (OR DEL(1880B)) FITTED WITH BRIET-WIGNER RESONANCE AND POLYNOMIAL BACKGROUND.
No description provided.
No description provided.