A search for flavor-changing neutral-current couplings between a top quark, an up or charm quark and a $Z$ boson is presented, using proton-proton collision data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector at the Large Hadron Collider. The analyzed dataset corresponds to an integrated luminosity of 139 fb$^{-1}$. The search targets both single-top-quark events produced as $gq\rightarrow tZ$ (with $q = u, c$) and top-quark-pair events, with one top quark decaying through the $t \rightarrow Zq$ channel. The analysis considers events with three leptons (electrons or muons), a $b$-tagged jet, possible additional jets, and missing transverse momentum. The data are found to be consistent with the background-only hypothesis and 95% confidence-level limits on the $t \rightarrow Zq$ branching ratios are set, assuming only tensor operators of the Standard Model effective field theory framework contribute to the $tZq$ vertices. These are $6.2 \times 10^{-5}$ ($13\times 10^{-5}$) for $t\rightarrow Zu$ ($t\rightarrow Zc$) for a left-handed $tZq$ coupling, and $6.6 \times 10^{-5}$ ($12\times 10^{-5}$) in the case of a right-handed coupling. These results are interpreted as 95% CL upper limits on the strength of corresponding couplings, yielding limits for $|C_{uW}^{(13)*}|$ and $|C_{uB}^{(13)*}|$ ($|C_{uW}^{(31)}|$ and $|C_{uB}^{(31)}|$) of 0.15 (0.16), and limits for $|C_{uW}^{(23)*}|$ and $|C_{uB}^{(23)*}|$ ($|C_{uW}^{(32)}|$ and $|C_{uB}^{(32)}|$) of 0.22 (0.21), assuming a new-physics energy scale $\Lambda_\text{NP}$ of 1 TeV.
Summary of the signal strength $\mu$ parameters obtained from the fits to extract LH and RH results for the FCNC tZu and tZc couplings. For the reference branching ratio, the most stringent limits are used.
Observed and expected 95% CL limits on the FCNC $t\rightarrow Zq$ branching ratios and the effective coupling strengths for different vertices and couplings (top eight rows). For the latter, the energy scale is assumed to be $\Lambda_{NP}$ = 1 TeV. The bottom rows show, for the case of the FCNC $t\rightarrow Zu$ branching ratio, the observed and expected 95% CL limits when only one of the two SRs, either SR1 or SR2, and all CRs are included in the likelihood.
Comparison between data and background prediction before the fit (Pre-Fit) for the mass of the SM top-quark candidate in SR1. The uncertainty band includes both the statistical and systematic uncertainties in the background prediction. The four FCNC LH signals are also shown separately, normalized to five times the cross-section corresponding to the most stringent observed branching ratio limits. The first (last) bin in all distributions includes the underflow (overflow). The lower panels show the ratios of the data (Data) to the background prediction (Bkg.).
Angular distributions of the decay B$^+$$\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s} =$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.
The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.
The first observation of open b production in ep collisions is reported. An event sample containing muons and jets has been selected which is enriched in semileptonic b quark decays. The visible cross section \sigma(ep -> b \bar{b}X -> \mu X') for Q^2 < 1 GeV^2, 0.1 < y < 0.8 is measured to be 0.176+-0.016(stat.)+0.026-0.017(syst.) nb for the muons to be detected in the range 35 deg < \theta^\mu < 130 deg and \pt^\mu > 2.0 GeV in the laboratory frame. The expected visible cross section based on a NLO QCD calculation is 0.104+-0.017 nb. The cross sections for electroproduction with Q^2<1 GeV^2 and photoproduction are derived from the data and found to be \sigma(ep-> e b\bar{b}X) = 7.1+-0.6(stat.)+1.5-1.3(syst.) nb and \sigma(\gamma p-> b\bar{b} X) = 111+-10(stat.)+23-20(syst.) at an average <W_{\gamma p}> \sim 180 GeV, respectively.
The visible BQ BQBAR --> MUON X cross section in the stated kinematic range.
The total electroproduction and photoproduction cross sections extrapolated to the full phase space.
The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.
The structure function, F2, and the reduced cross section, in NC DIS scattering at Q**2 from 150 to 30000 GeV**2 as a function if x and y. Also tabulated are the QED corrections to the data, which have already been applied. The individual corrections used to calculate F2 from the cross sections are given in the following table.
The various corrections to the cross sections used to calcuate the F2 values given in the previous table. See the text of the paper for more details.
The CC double differential cross section and the structure function term PHI(C=CC) - see text of the paper for details - at Q**2 from 150 to 1 5000 GeV**2 as a function of both x and y. Also tabulated are the QED corrections to the data, which have already been applied.
Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.
The inclusive transverse energy flow at a mean X of 0.00008 and mean Q**2 of 3.2 GeV**2 for the low Q**2 sample.
The inclusive transverse energy flow at a mean X of 0.00014 and mean Q**2 of 3.8 GeV**2 for the low Q**2 sample.
The inclusive transverse energy flow at a mean X of 0.00026 and mean Q**2 of 3.9 GeV**2 for the low Q**2 sample.
The electroproduction of J/psi and psi(2S) mesons is studied in elastic, quasi-elastic and inclusive reactions for four momentum transfers 2 < Q^2 < 80 GeV^2 and photon-proton centre of mass energies 25 < W < 180 GeV. The data were taken with the H1 detector at the electron proton collider HERA in the years 1995 to 1997. The total virtual photon-proton cross section for elastic J/psi production is measured as a function of Q^2 and W. The dependence of the production rates on the square of the momentum transfer from the proton (t) is extracted. Decay angular distributions are analysed and the ratio of the longitudinal and transverse cross sections is derived. The ratio of the cross sections for quasi-elastic psi(2S) and J/psi meson production is measured as a function of Q^2. The results are discussed in terms of theoretical models based upon perturbative QCD. Differential cross sections for inclusive and inelastic production of J/psi mesons are determined and predictions within two theoretical frameworks are compared with the data, the non-relativistic QCD factorization approach including colour octet and colour singlet contributions, and the model of Soft Colour Interactions.
Cross section for elastic J/PSI photoproduction in W bins.
Cross section for elastic J/PSI photoproduction in W bins.
Cross section for elastic J/PSI photoproduction in W bins.
Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies ET,Breit > 5 GeV are selected in the Breit frame employing k_perp and cone jet algorithms. In the kinematic region of squared momentum transfers 10 < Q2 <~ 120 GeV2 and x-Bjorken values 2.10^-4 <~ xBj <~ 8.10^-3, jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e.towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data.
The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range < 1.5 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.
The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range 1.5 TO 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.
The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range > 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.
With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.
Total cross section for DIS D*+- production in the specified kinemtaic range.
DIS cross section as a function of the transverse D* momentum in the laboratory frame.
DIS cross section as a function of the transverse D* momentum in the hadronic centre-of-mass frame.
Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T <= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV, or a neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.
Semi-inclusive structure function for data with forward proton.
Semi-inclusive structure function for data with forward proton.
Semi-inclusive structure function for data with forward proton.
Photoproduction data collected with the H1 detector at HERA in 1994 are used to study the cross-sections for inclusive charged particle production and the structure of the photon. The differential cross-sections dsigma/dpT2, for |eta| < 1 in the HERA laboratory frame, and dsigma/deta for pT > 2 GeV/c and pT > 3 GeV/c have been measured. Model calculations of these cross-sections, based on perturbative QCD, indicate that the results are sensitive to the parton densities of the photon as well as to higher order effects, which are phenomenologically treated by multiple interactions. This sensitivity is exploited to determine the leading order x_gamma distribution of partons in the photon using a new method based on high pT charged particles. The gluon content of the photon is extracted and found to rise with decreasing x_gamma.
Inclusive gamma-p cross section for charged particles in the photoproduction data.
The measured differential pseudorapidity distribution for inclusive chargedparticle production.